Sheaves
We define sheaves on a topological space, with values in an arbitrary category with products.
The sheaf condition for a F : presheaf C X
requires that the morphism
F.obj U ⟶ ∏ F.obj (U i)
(where U
is some open set which is the union of the U i
)
is the equalizer of the two morphisms
∏ F.obj (U i) ⟶ ∏ F.obj (U i) ⊓ (U j)
.
We provide the instance category (sheaf C X)
as the full subcategory of presheaves,
and the fully faithful functor sheaf.forget : sheaf C X ⥤ presheaf C X
.
The sheaf condition for a F : presheaf C X
requires that the morphism
F.obj U ⟶ ∏ F.obj (U i)
(where U
is some open set which is the union of the U i
)
is the equalizer of the two morphisms
∏ F.obj (U i) ⟶ ∏ F.obj (U i) ⊓ (U j)
.
Equations
- F.sheaf_condition = Π ⦃ι : Type v⦄ (U : ι → topological_space.opens ↥X), category_theory.limits.is_limit (Top.presheaf.sheaf_condition_equalizer_products.fork F U)
The presheaf valued in punit
over any topological space is a sheaf.
Equations
- F.sheaf_condition_punit = λ (ι : Type v) (U : ι → topological_space.opens ↥X), category_theory.limits.punit_cone_is_limit
Equations
Transfer the sheaf condition across an isomorphism of presheaves.
Equations
- Top.presheaf.sheaf_condition_equiv_of_iso α = equiv_of_subsingleton_of_subsingleton (λ (c : F.sheaf_condition) (ι : Type v) (U : ι → topological_space.opens ↥X), (⇑((category_theory.limits.is_limit.postcompose_inv_equiv (Top.presheaf.sheaf_condition_equalizer_products.diagram.iso_of_iso U α.symm) (Top.presheaf.sheaf_condition_equalizer_products.fork F U)).symm) (c U)).of_iso_limit (Top.presheaf.sheaf_condition_equalizer_products.fork.iso_of_iso U α.symm).symm) (λ (c : G.sheaf_condition) (ι : Type v) (U : ι → topological_space.opens ↥X), (⇑((category_theory.limits.is_limit.postcompose_inv_equiv (Top.presheaf.sheaf_condition_equalizer_products.diagram.iso_of_iso U α) (Top.presheaf.sheaf_condition_equalizer_products.fork G U)).symm) (c U)).of_iso_limit (Top.presheaf.sheaf_condition_equalizer_products.fork.iso_of_iso U α).symm)
- presheaf : Top.presheaf C X
- sheaf_condition : c.presheaf.sheaf_condition
A sheaf C X
is a presheaf of objects from C
over a (bundled) topological space X
,
satisfying the sheaf condition.
Equations
- X.sheaf_inhabited = {default := {presheaf := category_theory.functor.star (topological_space.opens ↥X)ᵒᵖ category_theory.category.opposite, sheaf_condition := default (Top.presheaf.sheaf_condition (category_theory.functor.star (topological_space.opens ↥X)ᵒᵖ)) (Top.presheaf.sheaf_condition_inhabited (category_theory.functor.star (topological_space.opens ↥X)ᵒᵖ))}}
The forgetful functor from sheaves to presheaves.