Category of categories
This file contains the definition of the category Cat of all categories.
In this category objects are categories and
morphisms are functors between these categories.
Implementation notes
Though Cat is not a concrete category, we use bundled to define
its carrier type.
Category of categories.
@[instance]
Equations
- category_theory.Cat.inhabited = {default := {α := Type u, str := category_theory.types}}
@[instance]
Equations
@[instance]
Construct a bundled Cat from the underlying type and the typeclass.
Equations
@[instance]
Category structure on Cat
Equations
- category_theory.Cat.category = {to_category_struct := {to_has_hom := {hom := λ (C D : category_theory.Cat), ↥C ⥤ ↥D}, id := λ (C : category_theory.Cat), 𝟭 ↥C, comp := λ (C D E : category_theory.Cat) (F : C ⟶ D) (G : D ⟶ E), F ⋙ G}, id_comp' := category_theory.Cat.category._proof_1, comp_id' := category_theory.Cat.category._proof_2, assoc' := category_theory.Cat.category._proof_3}
Functor that gets the set of objects of a category. It is not
called forget, because it is not a faithful functor.
Equations
- category_theory.Cat.objects = {obj := λ (C : category_theory.Cat), ↥C, map := λ (C D : category_theory.Cat) (F : C ⟶ D), F.obj, map_id' := category_theory.Cat.objects._proof_1, map_comp' := category_theory.Cat.objects._proof_2}
Any isomorphism in Cat induces an equivalence of the underlying categories.
Equations
- category_theory.Cat.equiv_of_iso γ = {functor := γ.hom, inverse := γ.inv, unit_iso := category_theory.eq_to_iso _, counit_iso := category_theory.eq_to_iso _, functor_unit_iso_comp' := _}
@[simp]
Embedding Type into Cat as discrete categories.
This ought to be modelled as a 2-functor!
Equations
- category_theory.Type_to_Cat = {obj := λ (X : Type u), category_theory.Cat.of (category_theory.discrete X), map := λ (X Y : Type u) (f : X ⟶ Y), category_theory.discrete.functor f, map_id' := category_theory.Type_to_Cat._proof_1, map_comp' := category_theory.Type_to_Cat._proof_2}
@[simp]
@[instance]
Equations
- category_theory.category_theory.full = {preimage := λ (X Y : Type (max (max (max u_1 u_2 u_3 u_4) u_1 u_2 u_3) (max u_1 u_2 u_3 u_4) u_1 u_2)) (F : category_theory.Type_to_Cat.obj X ⟶ category_theory.Type_to_Cat.obj Y), F.obj, witness' := category_theory.category_theory.full._proof_1}