booleans
This file proves various trivial lemmas about booleans and their relation to decidable propositions.
Notations
This file introduces the notation !b for bnot b, the boolean "not".
Tags
bool, boolean, De Morgan
@[instance]
If p b is decidable for all b : bool, then ∀ b, p b is decidable
Equations
- bool.decidable_forall_bool = decidable_of_decidable_of_iff and.decidable bool.decidable_forall_bool._proof_1
@[instance]
If p b is decidable for all b : bool, then ∃ b, p b is decidable
Equations
- bool.decidable_exists_bool = decidable_of_decidable_of_iff or.decidable bool.decidable_exists_bool._proof_1
De Morgan's laws for booleans
@[instance]
Equations
- bool.decidable_linear_order = {le := λ (a b : bool), a = ff ∨ b = tt, lt := λ (a b : bool), a ≤ b ∧ ¬b ≤ a, le_refl := bool.decidable_linear_order._proof_1, le_trans := bool.decidable_linear_order._proof_2, lt_iff_le_not_le := bool.decidable_linear_order._proof_3, le_antisymm := bool.decidable_linear_order._proof_4, le_total := bool.decidable_linear_order._proof_5, decidable_le := λ (a b : bool), or.decidable, decidable_eq := λ (a b : bool), bool.decidable_eq a b, decidable_lt := λ (a b : bool), and.decidable}