Equations
- topological_space.open_nhds x = {U // x ∈ U}
@[instance]
Equations
- topological_space.open_nhds.partial_order x = {le := λ (U V : topological_space.open_nhds x), U.val ≤ V.val, lt := preorder.lt._default (λ (U V : topological_space.open_nhds x), U.val ≤ V.val), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _}
@[instance]
Equations
- topological_space.open_nhds.lattice x = {sup := λ (U V : topological_space.open_nhds x), ⟨U.val ⊔ V.val, _⟩, le := partial_order.le (topological_space.open_nhds.partial_order x), lt := partial_order.lt (topological_space.open_nhds.partial_order x), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_sup_left := _, le_sup_right := _, sup_le := _, inf := λ (U V : topological_space.open_nhds x), ⟨U.val ⊓ V.val, _⟩, inf_le_left := _, inf_le_right := _, le_inf := _}
@[instance]
Equations
- topological_space.open_nhds.order_top x = {top := ⟨⊤, trivial⟩, le := partial_order.le (topological_space.open_nhds.partial_order x), lt := partial_order.lt (topological_space.open_nhds.partial_order x), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_top := _}
@[instance]
Equations
- topological_space.open_nhds.open_nhds_category x = _.mpr (category_theory.full_subcategory (λ (U : topological_space.opens ↥X), x ∈ U))
@[instance]
def
topological_space.open_nhds.opens_nhds_hom_has_coe_to_fun
{X : Top}
{x : ↥X}
{U V : topological_space.open_nhds x} :
has_coe_to_fun (U ⟶ V)
def
topological_space.open_nhds.inf_le_left
{X : Top}
{x : ↥X}
(U V : topological_space.open_nhds x) :
The inclusion U ⊓ V ⟶ U
as a morphism in the category of open sets.
Equations
def
topological_space.open_nhds.inf_le_right
{X : Top}
{x : ↥X}
(U V : topological_space.open_nhds x) :
The inclusion U ⊓ V ⟶ V
as a morphism in the category of open sets.
Equations
Equations
@[simp]
theorem
topological_space.open_nhds.inclusion_obj
{X : Top}
(x : ↥X)
(U : topological_space.opens ↥X)
(p : x ∈ U) :
(topological_space.open_nhds.inclusion x).obj ⟨U, p⟩ = U
@[instance]
Equations
- topological_space.open_nhds.map f x = {obj := λ (U : topological_space.open_nhds (⇑f x)), ⟨(topological_space.opens.map f).obj U.val, _⟩, map := λ (U V : topological_space.open_nhds (⇑f x)) (i : U ⟶ V), (topological_space.opens.map f).map i, map_id' := _, map_comp' := _}
@[simp]
theorem
topological_space.open_nhds.map_obj
{X Y : Top}
(f : X ⟶ Y)
(x : ↥X)
(U : topological_space.opens ↥Y)
(q : ⇑f x ∈ U) :
(topological_space.open_nhds.map f x).obj ⟨U, q⟩ = ⟨(topological_space.opens.map f).obj U, q⟩
@[simp]
theorem
topological_space.open_nhds.map_id_obj
{X : Top}
(x : ↥X)
(U : topological_space.open_nhds (⇑(𝟙 X) x)) :
(topological_space.open_nhds.map (𝟙 X) x).obj U = U
@[simp]
theorem
topological_space.open_nhds.map_id_obj_unop
{X : Top}
(x : ↥X)
(U : (topological_space.open_nhds x)ᵒᵖ) :
(topological_space.open_nhds.map (𝟙 X) x).obj (opposite.unop U) = opposite.unop U
@[simp]
theorem
topological_space.open_nhds.op_map_id_obj
{X : Top}
(x : ↥X)
(U : (topological_space.open_nhds x)ᵒᵖ) :
(topological_space.open_nhds.map (𝟙 X) x).op.obj U = U
Equations
- topological_space.open_nhds.inclusion_map_iso f x = category_theory.nat_iso.of_components (λ (U : topological_space.open_nhds (⇑f x)), {hom := 𝟙 ((topological_space.open_nhds.inclusion (⇑f x) ⋙ topological_space.opens.map f).obj U), inv := 𝟙 ((topological_space.open_nhds.map f x ⋙ topological_space.open_nhds.inclusion x).obj U), hom_inv_id' := _, inv_hom_id' := _}) _
@[simp]
@[simp]