Equality of two left cosets a*s
and b*s
Equations
- left_coset_equiv s a b = (a *l s = b *l s)
Equality of two left cosets a+s
and b+s
theorem
mem_left_add_coset_left_add_coset
{α : Type u_1}
[add_monoid α]
(s : add_submonoid α)
{a : α}
(ha : a +l ↑s = ↑s) :
a ∈ s
theorem
mem_right_add_coset_right_add_coset
{α : Type u_1}
[add_monoid α]
(s : add_submonoid α)
{a : α}
(ha : ↑s +r a = ↑s) :
a ∈ s
theorem
left_add_coset_mem_left_add_coset
{α : Type u_1}
[add_group α]
(s : add_subgroup α)
{a : α}
(ha : a ∈ s) :
theorem
right_add_coset_mem_right_add_coset
{α : Type u_1}
[add_group α]
(s : add_subgroup α)
{a : α}
(ha : a ∈ s) :
theorem
normal_of_eq_add_cosets
{α : Type u_1}
[add_group α]
(s : add_subgroup α)
(N : s.normal)
(g : α) :
theorem
eq_add_cosets_of_normal
{α : Type u_1}
[add_group α]
(s : add_subgroup α)
(h : ∀ (g : α), g +l ↑s = ↑s +r g) :
s.normal
The equivalence relation corresponding to the partition of a group by left cosets of a subgroup.
The canonical map from an add_group
α
to the quotient α/s
.
The canonical map from a group α
to the quotient α/s
.
Equations
theorem
quotient_group.induction_on
{α : Type u_1}
[group α]
{s : subgroup α}
{C : quotient_group.quotient s → Prop}
(x : quotient_group.quotient s)
(H : ∀ (z : α), C (quotient_group.mk z)) :
C x
theorem
quotient_add_group.induction_on
{α : Type u_1}
[add_group α]
{s : add_subgroup α}
{C : quotient_add_group.quotient s → Prop}
(x : quotient_add_group.quotient s)
(H : ∀ (z : α), C (quotient_add_group.mk z)) :
C x
@[instance]
theorem
quotient_add_group.induction_on'
{α : Type u_1}
[add_group α]
{s : add_subgroup α}
{C : quotient_add_group.quotient s → Prop}
(x : quotient_add_group.quotient s)
(H : ∀ (z : α), C ↑z) :
C x
theorem
quotient_group.induction_on'
{α : Type u_1}
[group α]
{s : subgroup α}
{C : quotient_group.quotient s → Prop}
(x : quotient_group.quotient s)
(H : ∀ (z : α), C ↑z) :
C x
@[instance]
Equations
- quotient_group.inhabited s = {default := ↑1}
@[instance]
theorem
quotient_add_group.eq_class_eq_left_coset
{α : Type u_1}
[add_group α]
(s : add_subgroup α)
(g : α) :
The natural bijection between the cosets g*s
and s
def
add_subgroup.left_coset_equiv_add_subgroup
{α : Type u_1}
[add_group α]
{s : add_subgroup α}
(g : α) :
The natural bijection between the cosets g+s
and s
def
subgroup.group_equiv_quotient_times_subgroup
{α : Type u_1}
[group α]
{s : subgroup α} :
α ≃ quotient_group.quotient s × ↥s
A (non-canonical) bijection between a group α
and the product (α/s) × s
Equations
- subgroup.group_equiv_quotient_times_subgroup = (((equiv.sigma_preimage_equiv quotient_group.mk).symm.trans (equiv.sigma_congr_right (λ (L : quotient_group.quotient s), _.mpr (id (_.mpr (equiv.refl {x // quotient.mk' x = L})))))).trans (equiv.sigma_congr_right (λ (L : quotient_group.quotient s), subgroup.left_coset_equiv_subgroup (quotient.out' L)))).trans (equiv.sigma_equiv_prod (quotient_group.quotient s) ↥s)
def
add_subgroup.add_group_equiv_quotient_times_add_subgroup
{α : Type u_1}
[add_group α]
{s : add_subgroup α} :
α ≃ quotient_add_group.quotient s × ↥s
A (non-canonical) bijection between an add_group α
and the product (α/s) × s
def
quotient_group.preimage_mk_equiv_subgroup_times_set
{α : Type u_1}
[group α]
(s : subgroup α)
(t : set (quotient_group.quotient s)) :
If s
is a subgroup of the group α
, and t
is a subset of α/s
, then
there is a (typically non-canonical) bijection between the preimage of t
in
α
and the product s × t
.
Equations
- quotient_group.preimage_mk_equiv_subgroup_times_set s t = have h : ∀ {x : quotient_group.quotient s} {a : α}, x ∈ t → a ∈ s → quotient.mk' ((quotient.out' x) * a) = quotient.mk' (quotient.out' x), from _, {to_fun := λ (_x : ↥(quotient_group.mk ⁻¹' t)), quotient_group.preimage_mk_equiv_subgroup_times_set._match_1 s t _x, inv_fun := λ (_x : ↥s × ↥t), quotient_group.preimage_mk_equiv_subgroup_times_set._match_2 s t h _x, left_inv := _, right_inv := _}
- quotient_group.preimage_mk_equiv_subgroup_times_set._match_1 s t ⟨a, ha⟩ = (⟨((quotient.mk' a).out')⁻¹ * a, _⟩, ⟨quotient.mk' a, ha⟩)
- quotient_group.preimage_mk_equiv_subgroup_times_set._match_2 s t h (⟨a, ha⟩, ⟨x, hx⟩) = ⟨(quotient.out' x) * a, _⟩