mathlib documentation

core.init.meta.level

meta inductive level  :
Type

A type universe term. eg max u v. Reflect a C++ level object. The VM replaces it with the C++ implementation.

@[instance]

@[instance]

meta constant level.lt (a a_1 : level) :

meta constant level.lex_lt (a a_1 : level) :

meta constant level.fold {α : Type} (a : level) (a_1 : α) (a_2 : levelα → α) :
α

meta constant level.normalize (a : level) :

Return the given level expression normal form

meta constant level.eqv (a a_1 : level) :

Return tt iff lhs and rhs denote the same level. The check is done by normalization.

meta constant level.occurs (a a_1 : level) :

Return tt iff the first level occurs in the second

meta constant level.instantiate (a : level) (a_1 : list (name × level)) :

Replace a parameter named n with l in the first level if the list contains the pair (n, l)

meta constant level.to_format (a : level) (a_1 : options) :

meta constant level.to_string (a : level) :

@[instance]

@[instance]

meta def level.of_nat (a : ) :

meta def level.has_param (a : level) (a_1 : name) :