mathlib documentation

topology.algebra.monoid

@[class]
structure has_continuous_add (α : Type u_4) [topological_space α] [has_add α] :
Prop

Basic hypothesis to talk about a topological additive monoid or a topological additive semigroup. A topological additive monoid over α, for example, is obtained by requiring both the instances add_monoid α and has_continuous_add α.

Instances
@[class]
structure has_continuous_mul (α : Type u_4) [topological_space α] [has_mul α] :
Prop

Basic hypothesis to talk about a topological monoid or a topological semigroup. A topological monoid over α, for example, is obtained by requiring both the instances monoid α and has_continuous_mul α.

Instances
theorem continuous_mul {α : Type u_1} [topological_space α] [has_mul α] [has_continuous_mul α] :
continuous (λ (p : α × α), (p.fst) * p.snd)

theorem continuous_add {α : Type u_1} [topological_space α] [has_add α] [has_continuous_add α] :
continuous (λ (p : α × α), p.fst + p.snd)

theorem continuous.add {α : Type u_1} {β : Type u_2} [topological_space α] [has_add α] [has_continuous_add α] [topological_space β] {f g : β → α} (hf : continuous f) (hg : continuous g) :
continuous (λ (x : β), f x + g x)

theorem continuous.mul {α : Type u_1} {β : Type u_2} [topological_space α] [has_mul α] [has_continuous_mul α] [topological_space β] {f g : β → α} (hf : continuous f) (hg : continuous g) :
continuous (λ (x : β), (f x) * g x)

theorem continuous_add_left {α : Type u_1} [topological_space α] [has_add α] [has_continuous_add α] (a : α) :
continuous (λ (b : α), a + b)

theorem continuous_mul_left {α : Type u_1} [topological_space α] [has_mul α] [has_continuous_mul α] (a : α) :
continuous (λ (b : α), a * b)

theorem continuous_add_right {α : Type u_1} [topological_space α] [has_add α] [has_continuous_add α] (a : α) :
continuous (λ (b : α), b + a)

theorem continuous_mul_right {α : Type u_1} [topological_space α] [has_mul α] [has_continuous_mul α] (a : α) :
continuous (λ (b : α), b * a)

theorem continuous_on.add {α : Type u_1} {β : Type u_2} [topological_space α] [has_add α] [has_continuous_add α] [topological_space β] {f g : β → α} {s : set β} (hf : continuous_on f s) (hg : continuous_on g s) :
continuous_on (λ (x : β), f x + g x) s

theorem continuous_on.mul {α : Type u_1} {β : Type u_2} [topological_space α] [has_mul α] [has_continuous_mul α] [topological_space β] {f g : β → α} {s : set β} (hf : continuous_on f s) (hg : continuous_on g s) :
continuous_on (λ (x : β), (f x) * g x) s

theorem tendsto_add {α : Type u_1} [topological_space α] [has_add α] [has_continuous_add α] {a b : α} :
(λ (p : α × α), p.fst + p.snd)→_{(a, b)}a + b

theorem tendsto_mul {α : Type u_1} [topological_space α] [has_mul α] [has_continuous_mul α] {a b : α} :
(λ (p : α × α), (p.fst) * p.snd)→_{(a, b)}a * b

theorem filter.tendsto.add {α : Type u_1} {β : Type u_2} [topological_space α] [has_add α] [has_continuous_add α] {f g : β → α} {x : filter β} {a b : α} (hf : filter.tendsto f x (𝓝 a)) (hg : filter.tendsto g x (𝓝 b)) :
filter.tendsto (λ (x : β), f x + g x) x (𝓝 (a + b))

theorem filter.tendsto.mul {α : Type u_1} {β : Type u_2} [topological_space α] [has_mul α] [has_continuous_mul α] {f g : β → α} {x : filter β} {a b : α} (hf : filter.tendsto f x (𝓝 a)) (hg : filter.tendsto g x (𝓝 b)) :
filter.tendsto (λ (x : β), (f x) * g x) x (𝓝 (a * b))

theorem continuous_at.add {α : Type u_1} {β : Type u_2} [topological_space α] [has_add α] [has_continuous_add α] [topological_space β] {f g : β → α} {x : β} (hf : continuous_at f x) (hg : continuous_at g x) :
continuous_at (λ (x : β), f x + g x) x

theorem continuous_at.mul {α : Type u_1} {β : Type u_2} [topological_space α] [has_mul α] [has_continuous_mul α] [topological_space β] {f g : β → α} {x : β} (hf : continuous_at f x) (hg : continuous_at g x) :
continuous_at (λ (x : β), (f x) * g x) x

theorem continuous_within_at.add {α : Type u_1} {β : Type u_2} [topological_space α] [has_add α] [has_continuous_add α] [topological_space β] {f g : β → α} {s : set β} {x : β} (hf : continuous_within_at f s x) (hg : continuous_within_at g s x) :
continuous_within_at (λ (x : β), f x + g x) s x

theorem continuous_within_at.mul {α : Type u_1} {β : Type u_2} [topological_space α] [has_mul α] [has_continuous_mul α] [topological_space β] {f g : β → α} {s : set β} {x : β} (hf : continuous_within_at f s x) (hg : continuous_within_at g s x) :
continuous_within_at (λ (x : β), (f x) * g x) s x

@[instance]
def prod.has_continuous_add {α : Type u_1} {β : Type u_2} [topological_space α] [has_add α] [has_continuous_add α] [topological_space β] [has_add β] [has_continuous_add β] :

@[instance]
def prod.has_continuous_mul {α : Type u_1} {β : Type u_2} [topological_space α] [has_mul α] [has_continuous_mul α] [topological_space β] [has_mul β] [has_continuous_mul β] :

theorem tendsto_list_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [monoid α] [has_continuous_mul α] {f : γ → β → α} {x : filter β} {a : γ → α} (l : list γ) (a_1 : ∀ (c : γ), c lfilter.tendsto (f c) x (𝓝 (a c))) :
filter.tendsto (λ (b : β), (list.map (λ (c : γ), f c b) l).prod) x (𝓝 (list.map a l).prod)

theorem tendsto_list_sum {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [add_monoid α] [has_continuous_add α] {f : γ → β → α} {x : filter β} {a : γ → α} (l : list γ) (a_1 : ∀ (c : γ), c lfilter.tendsto (f c) x (𝓝 (a c))) :
filter.tendsto (λ (b : β), (list.map (λ (c : γ), f c b) l).sum) x (𝓝 (list.map a l).sum)

theorem continuous_list_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [monoid α] [has_continuous_mul α] [topological_space β] {f : γ → β → α} (l : list γ) (h : ∀ (c : γ), c lcontinuous (f c)) :
continuous (λ (a : β), (list.map (λ (c : γ), f c a) l).prod)

theorem continuous_list_sum {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [add_monoid α] [has_continuous_add α] [topological_space β] {f : γ → β → α} (l : list γ) (h : ∀ (c : γ), c lcontinuous (f c)) :
continuous (λ (a : β), (list.map (λ (c : γ), f c a) l).sum)

theorem continuous_pow {α : Type u_1} [topological_space α] [monoid α] [has_continuous_mul α] (n : ) :
continuous (λ (a : α), a ^ n)

theorem continuous.pow {α : Type u_1} {β : Type u_2} [topological_space α] [monoid α] [has_continuous_mul α] {f : β → α} [topological_space β] (h : continuous f) (n : ) :
continuous (λ (b : β), f b ^ n)

theorem add_submonoid.mem_nhds_zero {α : Type u_1} [topological_space α] [add_comm_monoid α] (β : add_submonoid α) (oβ : is_open β) :

theorem submonoid.mem_nhds_one {α : Type u_1} [topological_space α] [comm_monoid α] (β : submonoid α) (oβ : is_open β) :

theorem tendsto_multiset_sum {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [add_comm_monoid α] [has_continuous_add α] {f : γ → β → α} {x : filter β} {a : γ → α} (s : multiset γ) (a_1 : ∀ (c : γ), c sfilter.tendsto (f c) x (𝓝 (a c))) :
filter.tendsto (λ (b : β), (multiset.map (λ (c : γ), f c b) s).sum) x (𝓝 (multiset.map a s).sum)

theorem tendsto_multiset_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [comm_monoid α] [has_continuous_mul α] {f : γ → β → α} {x : filter β} {a : γ → α} (s : multiset γ) (a_1 : ∀ (c : γ), c sfilter.tendsto (f c) x (𝓝 (a c))) :
filter.tendsto (λ (b : β), (multiset.map (λ (c : γ), f c b) s).prod) x (𝓝 (multiset.map a s).prod)

theorem tendsto_finset_sum {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [add_comm_monoid α] [has_continuous_add α] {f : γ → β → α} {x : filter β} {a : γ → α} (s : finset γ) (a_1 : ∀ (c : γ), c sfilter.tendsto (f c) x (𝓝 (a c))) :
filter.tendsto (λ (b : β), ∑ (c : γ) in s, f c b) x (𝓝 (∑ (c : γ) in s, a c))

theorem tendsto_finset_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [comm_monoid α] [has_continuous_mul α] {f : γ → β → α} {x : filter β} {a : γ → α} (s : finset γ) (a_1 : ∀ (c : γ), c sfilter.tendsto (f c) x (𝓝 (a c))) :
filter.tendsto (λ (b : β), ∏ (c : γ) in s, f c b) x (𝓝 (∏ (c : γ) in s, a c))

theorem continuous_multiset_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [comm_monoid α] [has_continuous_mul α] [topological_space β] {f : γ → β → α} (s : multiset γ) (a : ∀ (c : γ), c scontinuous (f c)) :
continuous (λ (a : β), (multiset.map (λ (c : γ), f c a) s).prod)

theorem continuous_multiset_sum {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [add_comm_monoid α] [has_continuous_add α] [topological_space β] {f : γ → β → α} (s : multiset γ) (a : ∀ (c : γ), c scontinuous (f c)) :
continuous (λ (a : β), (multiset.map (λ (c : γ), f c a) s).sum)

theorem continuous_finset_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [comm_monoid α] [has_continuous_mul α] [topological_space β] {f : γ → β → α} (s : finset γ) (a : ∀ (c : γ), c scontinuous (f c)) :
continuous (λ (a : β), ∏ (c : γ) in s, f c a)

theorem continuous_finset_sum {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [add_comm_monoid α] [has_continuous_add α] [topological_space β] {f : γ → β → α} (s : finset γ) (a : ∀ (c : γ), c scontinuous (f c)) :
continuous (λ (a : β), ∑ (c : γ) in s, f c a)