The category of module objects over a monoid object.
structure
Mod
{C : Type u₁}
[category_theory.category C]
[category_theory.monoidal_category C]
(A : Mon_ C) :
Type (max u₁ v₁)
- X : C
- act : A.X ⊗ c.X ⟶ c.X
- one_act' : (A.one ⊗ 𝟙 c.X) ≫ c.act = (λ_ c.X).hom . "obviously"
- assoc' : (A.mul ⊗ 𝟙 c.X) ≫ c.act = (α_ A.X A.X c.X).hom ≫ (𝟙 A.X ⊗ c.act) ≫ c.act . "obviously"
A module object for a monoid object, all internal to some monoidal category.
theorem
Mod.hom.ext_iff
{C : Type u₁}
{_inst_1 : category_theory.category C}
{_inst_2 : category_theory.monoidal_category C}
{A : Mon_ C}
{M N : Mod A}
(x y : M.hom N) :
theorem
Mod.hom.ext
{C : Type u₁}
{_inst_1 : category_theory.category C}
{_inst_2 : category_theory.monoidal_category C}
{A : Mon_ C}
{M N : Mod A}
(x y : M.hom N)
(h : x.hom = y.hom) :
x = y
@[simp]
theorem
Mod.id_hom
{C : Type u₁}
[category_theory.category C]
[category_theory.monoidal_category C]
{A : Mon_ C}
(M : Mod A) :
@[instance]
def
Mod.hom_inhabited
{C : Type u₁}
[category_theory.category C]
[category_theory.monoidal_category C]
{A : Mon_ C}
(M : Mod A) :
Equations
- M.hom_inhabited = {default := M.id}
@[simp]
theorem
Mod.comp_hom
{C : Type u₁}
[category_theory.category C]
[category_theory.monoidal_category C]
{A : Mon_ C}
{M N O : Mod A}
(f : M.hom N)
(g : N.hom O) :
@[instance]
def
Mod.category_theory.category
{C : Type u₁}
[category_theory.category C]
[category_theory.monoidal_category C]
{A : Mon_ C} :
@[simp]
theorem
Mod.id_hom'
{C : Type u₁}
[category_theory.category C]
[category_theory.monoidal_category C]
{A : Mon_ C}
(M : Mod A) :
@[simp]
theorem
Mod.comp_hom'
{C : Type u₁}
[category_theory.category C]
[category_theory.monoidal_category C]
{A : Mon_ C}
{M N K : Mod A}
(f : M ⟶ N)
(g : N ⟶ K) :
@[simp]
theorem
Mod.regular_act
{C : Type u₁}
[category_theory.category C]
[category_theory.monoidal_category C]
(A : Mon_ C) :
(Mod.regular A).act = A.mul
def
Mod.regular
{C : Type u₁}
[category_theory.category C]
[category_theory.monoidal_category C]
(A : Mon_ C) :
Mod A
A monoid object as a module over itself.
@[simp]
theorem
Mod.regular_X
{C : Type u₁}
[category_theory.category C]
[category_theory.monoidal_category C]
(A : Mon_ C) :
(Mod.regular A).X = A.X
@[instance]
def
Mod.inhabited
{C : Type u₁}
[category_theory.category C]
[category_theory.monoidal_category C]
(A : Mon_ C) :
Equations
- Mod.inhabited A = {default := Mod.regular A}
def
Mod.forget
{C : Type u₁}
[category_theory.category C]
[category_theory.monoidal_category C]
(A : Mon_ C) :
The forgetful functor from module objects to the ambient category.
def
Mod.comap
{C : Type u₁}
[category_theory.category C]
[category_theory.monoidal_category C]
{A B : Mon_ C}
(f : A ⟶ B) :
A morphism of monoid objects induces a "restriction" or "comap" functor between the categories of module objects.
@[simp]
theorem
Mod.comap_map_hom
{C : Type u₁}
[category_theory.category C]
[category_theory.monoidal_category C]
{A B : Mon_ C}
(f : A ⟶ B)
(M N : Mod B)
(g : M ⟶ N) :
@[simp]
theorem
Mod.comap_obj_X
{C : Type u₁}
[category_theory.category C]
[category_theory.monoidal_category C]
{A B : Mon_ C}
(f : A ⟶ B)
(M : Mod B) :