mathlib documentation

data.num.basic

@[instance]

inductive pos_num  :
Type

The type of positive binary numbers.

13 = 1101(base 2) = bit1 (bit0 (bit1 one))
@[instance]

Equations
inductive num  :
Type

The type of nonnegative binary numbers, using pos_num.

13 = 1101(base 2) = pos (bit1 (bit0 (bit1 one)))
@[instance]

@[instance]

@[instance]

Equations
@[instance]

Equations
@[instance]

Equations
@[instance]

inductive znum  :
Type

Representation of integers using trichotomy around zero.

13 = 1101(base 2) = pos (bit1 (bit0 (bit1 one)))
-13 = -1101(base 2) = neg (bit1 (bit0 (bit1 one)))
@[instance]

Equations
@[instance]

Equations
@[instance]

Equations
def pos_num.is_one (a : pos_num) :

Equations
def pos_num.add (a a_1 : pos_num) :

Equations
def pos_num.pred' (a : pos_num) :

Equations

Equations

Equations
def pos_num.mul (a a_1 : pos_num) :

Equations
@[instance]

Equations
@[instance]

Equations
def cast_pos_num {α : Type u_1} [has_zero α] [has_one α] [has_add α] (a : pos_num) :
α

Equations
def cast_num {α : Type u_1} [has_zero α] [has_one α] [has_add α] (a : num) :
α

Equations
@[instance]
def pos_num_coe {α : Type u_1} [has_zero α] [has_one α] [has_add α] :

Equations
@[instance]
def num_nat_coe {α : Type u_1} [has_zero α] [has_one α] [has_add α] :

Equations
@[instance]

Equations
@[instance]

Equations
def num.succ' (a : num) :

Equations
def num.succ (n : num) :

Equations
def num.add (a a_1 : num) :

Equations
@[instance]

Equations
def num.bit0 (a : num) :

Equations
def num.bit1 (a : num) :

Equations
def num.bit (b : bool) (a : num) :

Equations
def num.size (a : num) :

Equations
def num.nat_size (a : num) :

Equations
def num.mul (a a_1 : num) :

Equations
@[instance]

Equations
def num.cmp (a a_1 : num) :

Equations
@[instance]

Equations
@[instance]

Equations
def num.to_znum (a : num) :

Equations
def num.of_nat' (a : ) :

Equations
def znum.zneg (a : znum) :

Equations
@[instance]

Equations
def znum.abs (a : znum) :

Equations
def znum.succ (a : znum) :

Equations
def znum.bit0 (a : znum) :

Equations
def znum.bit1 (a : znum) :

Equations
def znum.bitm1 (a : znum) :

Equations
def pos_num.sub (a b : pos_num) :

Equations
def num.ppred (a : num) :

Equations
def num.pred (a : num) :

Equations
def num.div2 (a : num) :

Equations
def num.sub' (a a_1 : num) :

Equations
def num.psub (a b : num) :

Equations
def num.sub (a b : num) :

Equations
@[instance]

Equations
def znum.add (a a_1 : znum) :

Equations
@[instance]

Equations
def znum.mul (a a_1 : znum) :

Equations
@[instance]

Equations
@[instance]

Equations
@[instance]

Equations
def pos_num.divmod_aux (d : pos_num) (q r : num) :

Equations
def pos_num.divmod (d a : pos_num) :

Equations
def pos_num.div' (n d : pos_num) :

Equations
def pos_num.mod' (n d : pos_num) :

Equations
def pos_num.sqrt_aux1 (b : pos_num) (r n : num) :

Equations
def pos_num.sqrt_aux (a : pos_num) (a_1 a_2 : num) :

Equations
def num.div (a a_1 : num) :

Equations
def num.mod (a a_1 : num) :

Equations
@[instance]

Equations
@[instance]

Equations
def num.gcd_aux (a : ) (a_1 a_2 : num) :

Equations
def num.gcd (a b : num) :

Equations
def znum.div (a a_1 : znum) :

Equations
def znum.mod (a a_1 : znum) :

Equations
@[instance]

Equations
@[instance]

Equations
def znum.gcd (a b : znum) :

Equations
def cast_znum {α : Type u_1} [has_zero α] [has_one α] [has_add α] [has_neg α] (a : znum) :
α

Equations
@[instance]
def znum_coe {α : Type u_1} [has_zero α] [has_one α] [has_add α] [has_neg α] :

Equations
@[instance]

Equations