strictly monotone functions, max, min and abs
This file proves basic properties about strictly monotone functions,
maxima and minima on a decidable_linear_order
, and the absolute value
function on linearly ordered add_comm_groups, semirings and rings.
Tags
min, max, abs
@[simp]
@[simp]
theorem
max_le_max
{α : Type u}
[decidable_linear_order α]
{a b c d : α}
(a_1 : a ≤ c)
(a_2 : b ≤ d) :
theorem
min_le_min
{α : Type u}
[decidable_linear_order α]
{a b c d : α}
(a_1 : a ≤ c)
(a_2 : b ≤ d) :
@[instance]
An instance asserting that max a a = a
@[instance]
An instance asserting that min a a = a
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
max_lt_max
{α : Type u}
[decidable_linear_order α]
{a b c d : α}
(h₁ : a < c)
(h₂ : b < d) :
theorem
min_lt_min
{α : Type u}
[decidable_linear_order α]
{a b c d : α}
(h₁ : a < c)
(h₂ : b < d) :
theorem
monotone.map_max
{α : Type u}
{β : Type v}
[decidable_linear_order α]
[decidable_linear_order β]
{f : α → β}
{a b : α}
(hf : monotone f) :
theorem
monotone.map_min
{α : Type u}
{β : Type v}
[decidable_linear_order α]
[decidable_linear_order β]
{f : α → β}
{a b : α}
(hf : monotone f) :
theorem
le_of_max_le_left
{α : Type u}
[decidable_linear_order α]
{a b c : α}
(h : max a b ≤ c) :
a ≤ c
theorem
le_of_max_le_right
{α : Type u}
[decidable_linear_order α]
{a b c : α}
(h : max a b ≤ c) :
b ≤ c
theorem
fn_min_mul_fn_max
{α : Type u}
{β : Type v}
[decidable_linear_order α]
[comm_semigroup β]
(f : α → β)
(n m : α) :
theorem
fn_min_add_fn_max
{α : Type u}
{β : Type v}
[decidable_linear_order α]
[add_comm_semigroup β]
(f : α → β)
(n m : α) :
@[simp]
@[simp]
theorem
abs_le_max_abs_abs
{α : Type u}
[decidable_linear_ordered_add_comm_group α]
{a b c : α}
(hab : a ≤ b)
(hbc : b ≤ c) :
theorem
abs_le_abs
{α : Type u_1}
[decidable_linear_ordered_add_comm_group α]
{a b : α}
(h₀ : a ≤ b)
(h₁ : -a ≤ b) :
theorem
min_le_add_of_nonneg_right
{α : Type u}
[decidable_linear_ordered_add_comm_group α]
{a b : α}
(hb : 0 ≤ b) :
theorem
min_le_add_of_nonneg_left
{α : Type u}
[decidable_linear_ordered_add_comm_group α]
{a b : α}
(ha : 0 ≤ a) :
theorem
max_le_add_of_nonneg
{α : Type u}
[decidable_linear_ordered_add_comm_group α]
{a b : α}
(ha : 0 ≤ a)
(hb : 0 ≤ b) :
theorem
abs_max_sub_max_le_abs
{α : Type u}
[decidable_linear_ordered_add_comm_group α]
(a b c : α) :
theorem
mul_max_of_nonneg
{α : Type u}
[decidable_linear_ordered_semiring α]
{a : α}
(b c : α)
(ha : 0 ≤ a) :
theorem
mul_min_of_nonneg
{α : Type u}
[decidable_linear_ordered_semiring α]
{a : α}
(b c : α)
(ha : 0 ≤ a) :
theorem
max_mul_of_nonneg
{α : Type u}
[decidable_linear_ordered_semiring α]
{c : α}
(a b : α)
(hc : 0 ≤ c) :
theorem
min_mul_of_nonneg
{α : Type u}
[decidable_linear_ordered_semiring α]
{c : α}
(a b : α)
(hc : 0 ≤ c) :