The category of "pairwise intersections".
Given ι : Type v, we build the diagram category pairwise ι
with objects single i and pair i j, for i j : ι,
whose only non-identity morphisms are
left : single i ⟶ pair i j and right : single j ⟶ pair i j.
We use this later in describing the sheaf condition.
Given any function U : ι → α, where α is some complete lattice (e.g. opens X),
we produce a functor pairwise ι ⥤ αᵒᵖ in the obvious way,
and show that supr U provides a limit cone over this functor.
- single : Π (ι : Type v), ι → category_theory.pairwise ι
- pair : Π (ι : Type v), ι → ι → category_theory.pairwise ι
An inductive type representing either a single term of a type ι, or a pair of terms.
We use this as the objects of a category to describe the sheaf condition.
- id_single : Π {ι : Type v} (i : ι), (category_theory.pairwise.single i).hom (category_theory.pairwise.single i)
- id_pair : Π {ι : Type v} (i j : ι), (category_theory.pairwise.pair i j).hom (category_theory.pairwise.pair i j)
- left : Π {ι : Type v} (i j : ι), (category_theory.pairwise.single i).hom (category_theory.pairwise.pair i j)
- right : Π {ι : Type v} (i j : ι), (category_theory.pairwise.single j).hom (category_theory.pairwise.pair i j)
Morphisms in the category pairwise ι. The only non-identity morphisms are
left i j : single i ⟶ pair i j and right i j : single j ⟶ pair i j.
The identity morphism in pairwise ι.
Composition of morphisms in pairwise ι.
Equations
- category_theory.pairwise.comp (category_theory.pairwise.hom.right _x_1 _x) (category_theory.pairwise.hom.id_pair _x_1 _x) = category_theory.pairwise.hom.right _x_1 _x
- category_theory.pairwise.comp (category_theory.pairwise.hom.left _x _x_1) (category_theory.pairwise.hom.id_pair _x _x_1) = category_theory.pairwise.hom.left _x _x_1
- category_theory.pairwise.comp (category_theory.pairwise.hom.id_pair i j) g = g
- category_theory.pairwise.comp (category_theory.pairwise.hom.id_single i) g = g
Equations
- category_theory.pairwise.category_theory.category = {to_category_struct := {to_has_hom := {hom := category_theory.pairwise.hom ι}, id := category_theory.pairwise.id ι, comp := λ (X Y Z : category_theory.pairwise ι) (f : X ⟶ Y) (g : Y ⟶ Z), category_theory.pairwise.comp f g}, id_comp' := _, comp_id' := _, assoc' := _}
Auxilliary definition for diagram.
Equations
Auxilliary definition for diagram.
Equations
- category_theory.pairwise.diagram_map U (category_theory.pairwise.hom.right i j) = (category_theory.hom_of_le _).op
- category_theory.pairwise.diagram_map U (category_theory.pairwise.hom.left i j) = (category_theory.hom_of_le _).op
- category_theory.pairwise.diagram_map U (category_theory.pairwise.hom.id_pair i j) = 𝟙 (category_theory.pairwise.diagram_obj U (category_theory.pairwise.pair i j))
- category_theory.pairwise.diagram_map U (category_theory.pairwise.hom.id_single i) = 𝟙 (category_theory.pairwise.diagram_obj U (category_theory.pairwise.single i))
Given a function U : ι → α for [semilattice_inf α], we obtain a functor pairwise ι ⥤ αᵒᵖ,
sending single i to op (U i) and pair i j to op (U i ⊓ U j),
and the morphisms to the obvious inequalities.
Equations
- category_theory.pairwise.diagram U = {obj := category_theory.pairwise.diagram_obj U _inst_1, map := λ (X Y : category_theory.pairwise ι) (f : X ⟶ Y), category_theory.pairwise.diagram_map U f, map_id' := _, map_comp' := _}
Auxilliary definition for cone.
Given a function U : ι → α for [complete_lattice α],
supr U provides a cone over diagram U.
Equations
- category_theory.pairwise.cone U = {X := opposite.op (supr U), π := {app := category_theory.pairwise.cone_π_app U _inst_1, naturality' := _}}
Given a function U : ι → α for [complete_lattice α],
supr U provides a limit cone over diagram U.
Equations
- category_theory.pairwise.cone_is_limit U = {lift := λ (s : category_theory.limits.cone (category_theory.pairwise.diagram U)), category_theory.op_hom_of_le _, fac' := _, uniq' := _}