@[instance]
@[instance]
def
category_theory.limits.complete_lattice.limit_cone
{α J : Type u}
[category_theory.small_category J]
[complete_lattice α]
(F : J ⥤ α) :
The limit cone over any functor into a complete lattice.
Equations
- category_theory.limits.complete_lattice.limit_cone F = {cone := {X := infi F.obj, π := {app := λ (j : J), category_theory.hom_of_le _, naturality' := _}}, is_limit := {lift := λ (s : category_theory.limits.cone F), category_theory.hom_of_le _, fac' := _, uniq' := _}}
def
category_theory.limits.complete_lattice.colimit_cocone
{α J : Type u}
[category_theory.small_category J]
[complete_lattice α]
(F : J ⥤ α) :
The colimit cocone over any functor into a complete lattice.
Equations
- category_theory.limits.complete_lattice.colimit_cocone F = {cocone := {X := supr F.obj, ι := {app := λ (j : J), category_theory.hom_of_le _, naturality' := _}}, is_colimit := {desc := λ (s : category_theory.limits.cocone F), category_theory.hom_of_le _, fac' := _, uniq' := _}}
@[instance]
@[instance]
def
category_theory.limits.complete_lattice.limit_iso_infi
{α J : Type u}
[category_theory.small_category J]
[complete_lattice α]
(F : J ⥤ α) :
The limit of a functor into a complete lattice is the infimum of the objects in the image.
@[simp]
theorem
category_theory.limits.complete_lattice.limit_iso_infi_hom
{α J : Type u}
[category_theory.small_category J]
[complete_lattice α]
(F : J ⥤ α)
(j : J) :
@[simp]
theorem
category_theory.limits.complete_lattice.limit_iso_infi_inv
{α J : Type u}
[category_theory.small_category J]
[complete_lattice α]
(F : J ⥤ α)
(j : J) :
def
category_theory.limits.complete_lattice.colimit_iso_supr
{α J : Type u}
[category_theory.small_category J]
[complete_lattice α]
(F : J ⥤ α) :
The colimit of a functor into a complete lattice is the supremum of the objects in the image.
@[simp]
theorem
category_theory.limits.complete_lattice.colimit_iso_supr_hom
{α J : Type u}
[category_theory.small_category J]
[complete_lattice α]
(F : J ⥤ α)
(j : J) :
@[simp]
theorem
category_theory.limits.complete_lattice.colimit_iso_supr_inv
{α J : Type u}
[category_theory.small_category J]
[complete_lattice α]
(F : J ⥤ α)
(j : J) :