theorem
monotonicity.pi
{α : Sort u}
{p q : α → Prop}
(h : ∀ (a : α), implies (p a) (q a)) :
implies (∀ (a : α), p a) (∀ (a : α), q a)
theorem
monotonicity.imp
{p p' q q' : Prop}
(h₁ : implies p' q')
(h₂ : implies q p) :
implies (p → p') (q → q')
theorem
monotonicity.exists
{α : Sort u}
{p q : α → Prop}
(h : ∀ (a : α), implies (p a) (q a)) :
implies (∃ (a : α), p a) (∃ (a : α), q a)
def
tactic.add_coinductive_predicate.coind_pred.le
(pd : tactic.add_coinductive_predicate.coind_pred)
(f₁ f₂ : expr) :
def
tactic.add_coinductive_predicate.coind_pred.add_theorem
(pd : tactic.add_coinductive_predicate.coind_pred)
(n : name)
(type : expr)
(tac : tactic unit) :
def
tactic.coinductive_predicate
(meta_info : interactive.decl_meta_info)
(_x : interactive.parse (lean.parser.tk "coinductive")) :
def
tactic.interactive.coinduction
(corec_name : interactive.parse lean.parser.ident)
(ns : interactive.parse interactive.types.with_ident_list)
(revert : interactive.parse (lean.parser.tk "generalizing" *> lean.parser.ident * )?) :