mathlib documentation

measure_theory.measure_space

Measure spaces

Given a measurable space α, a measure on α is a function that sends measurable sets to the extended nonnegative reals that satisfies the following conditions:

  1. μ ∅ = 0;
  2. μ is countably additive. This means that the measure of a countable union of pairwise disjoint sets is equal to the measure of the individual sets.

Every measure can be canonically extended to an outer measure, so that it assigns values to all subsets, not just the measurable subsets. On the other hand, a measure that is countably additive on measurable sets can be restricted to measurable sets to obtain a measure. In this file a measure is defined to be an outer measure that is countably additive on measurable sets, with the additional assumption that the outer measure is the canonical extension of the restricted measure.

Measures on α form a complete lattice, and are closed under scalar multiplication with ennreal.

We introduce the following typeclasses for measures:

Given a measure, the null sets are the sets where μ s = 0, where μ denotes the corresponding outer measure (so s might not be measurable). We can then define the completion of μ as the measure on the least σ-algebra that also contains all null sets, by defining the measure to be 0 on the null sets.

Main statements

Implementation notes

Given μ : measure α, μ s is the value of the outer measure applied to s. This conveniently allows us to apply the measure to sets without proving that they are measurable. We get countable subadditivity for all sets, but only countable additivity for measurable sets.

You often don't want to define a measure via its constructor. Two ways that are sometimes more convenient:

To prove that two measures are equal, there are multiple options:

A measure_space is a class that is a measurable space with a canonical measure. The measure is denoted volume.

References

Tags

measure, almost everywhere, measure space, completion, null set, null measurable set

structure measure_theory.measure (α : Type u_1) [measurable_space α] :
Type u_1

A measure is defined to be an outer measure that is countably additive on measurable sets, with the additional assumption that the outer measure is the canonical extension of the restricted measure.

@[instance]

Measure projections for a measure space.

For measurable sets this returns the measure assigned by the measure_of field in measure. But we can extend this to _all_ sets, but using the outer measure. This gives us monotonicity and subadditivity for all sets.

Equations

General facts about measures

def measure_theory.measure.of_measurable {α : Type u_1} [measurable_space α] (m : Π (s : set α), is_measurable sennreal) (m0 : m is_measurable.empty = 0) (mU : ∀ ⦃f : set α⦄ (h : ∀ (i : ), is_measurable (f i)), pairwise (disjoint on f)(m (⋃ (i : ), f i) _ = ∑' (i : ), m (f i) _)) :

Obtain a measure by giving a countably additive function that sends to 0.

Equations
theorem measure_theory.measure.of_measurable_apply {α : Type u_1} [measurable_space α] {m : Π (s : set α), is_measurable sennreal} {m0 : m is_measurable.empty = 0} {mU : ∀ ⦃f : set α⦄ (h : ∀ (i : ), is_measurable (f i)), pairwise (disjoint on f)(m (⋃ (i : ), f i) _ = ∑' (i : ), m (f i) _)} (s : set α) (hs : is_measurable s) :

@[ext]
theorem measure_theory.measure.ext {α : Type u_1} [measurable_space α] {μ₁ μ₂ : measure_theory.measure α} (h : ∀ (s : set α), is_measurable sμ₁ s = μ₂ s) :
μ₁ = μ₂

theorem measure_theory.measure.ext_iff {α : Type u_1} [measurable_space α] {μ₁ μ₂ : measure_theory.measure α} :
μ₁ = μ₂ ∀ (s : set α), is_measurable sμ₁ s = μ₂ s

theorem measure_theory.measure_eq_trim {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} (s : set α) :

theorem measure_theory.measure_eq_infi {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} (s : set α) :
μ s = ⨅ (t : set α) (st : s t) (ht : is_measurable t), μ t

theorem measure_theory.measure_eq_extend {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s : set α} (hs : is_measurable s) :
μ s = measure_theory.extend (λ (t : set α) (ht : is_measurable t), μ t) s

@[simp]
theorem measure_theory.measure_empty {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} :
μ = 0

theorem measure_theory.nonempty_of_measure_ne_zero {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s : set α} (h : μ s 0) :

theorem measure_theory.measure_mono {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s₁ s₂ : set α} (h : s₁ s₂) :
μ s₁ μ s₂

theorem measure_theory.measure_mono_null {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s₁ s₂ : set α} (h : s₁ s₂) (h₂ : μ s₂ = 0) :
μ s₁ = 0

theorem measure_theory.measure_mono_top {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s₁ s₂ : set α} (h : s₁ s₂) (h₁ : μ s₁ = ) :
μ s₂ =

theorem measure_theory.exists_is_measurable_superset_of_measure_eq_zero {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s : set α} (h : μ s = 0) :
∃ (t : set α), s t is_measurable t μ t = 0

theorem measure_theory.exists_is_measurable_superset_iff_measure_eq_zero {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s : set α} :
(∃ (t : set α), s t is_measurable t μ t = 0) μ s = 0

theorem measure_theory.measure_Union_le {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {β : Type u_2} [encodable β] (s : β → set α) :
μ (⋃ (i : β), s i) ∑' (i : β), μ (s i)

theorem measure_theory.measure_bUnion_le {α : Type u_1} {β : Type u_2} [measurable_space α] {μ : measure_theory.measure α} {s : set β} (hs : s.countable) (f : β → set α) :
μ (⋃ (b : β) (H : b s), f b) ∑' (p : s), μ (f p)

theorem measure_theory.measure_bUnion_finset_le {α : Type u_1} {β : Type u_2} [measurable_space α] {μ : measure_theory.measure α} (s : finset β) (f : β → set α) :
μ (⋃ (b : β) (H : b s), f b) ∑ (p : β) in s, μ (f p)

theorem measure_theory.measure_bUnion_lt_top {α : Type u_1} {β : Type u_2} [measurable_space α] {μ : measure_theory.measure α} {s : set β} {f : β → set α} (hs : s.finite) (hfin : ∀ (i : β), i sμ (f i) < ) :
μ (⋃ (i : β) (H : i s), f i) <

theorem measure_theory.measure_Union_null {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {β : Type u_2} [encodable β] {s : β → set α} (a : ∀ (i : β), μ (s i) = 0) :
μ (⋃ (i : β), s i) = 0

theorem measure_theory.measure_union_le {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} (s₁ s₂ : set α) :
μ (s₁ s₂) μ s₁ + μ s₂

theorem measure_theory.measure_union_null {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s₁ s₂ : set α} (a : μ s₁ = 0) (a_1 : μ s₂ = 0) :
μ (s₁ s₂) = 0

theorem measure_theory.measure_Union {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {β : Type u_2} [encodable β] {f : β → set α} (hn : pairwise (disjoint on f)) (h : ∀ (i : β), is_measurable (f i)) :
μ (⋃ (i : β), f i) = ∑' (i : β), μ (f i)

theorem measure_theory.measure_union {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s₁ s₂ : set α} (hd : disjoint s₁ s₂) (h₁ : is_measurable s₁) (h₂ : is_measurable s₂) :
μ (s₁ s₂) = μ s₁ + μ s₂

theorem measure_theory.measure_bUnion {α : Type u_1} {β : Type u_2} [measurable_space α] {μ : measure_theory.measure α} {s : set β} {f : β → set α} (hs : s.countable) (hd : s.pairwise_on (disjoint on f)) (h : ∀ (b : β), b sis_measurable (f b)) :
μ (⋃ (b : β) (H : b s), f b) = ∑' (p : s), μ (f p)

theorem measure_theory.measure_sUnion {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {S : set (set α)} (hs : S.countable) (hd : S.pairwise_on disjoint) (h : ∀ (s : set α), s Sis_measurable s) :
μ (⋃₀S) = ∑' (s : S), μ s

theorem measure_theory.measure_bUnion_finset {α : Type u_1} {ι : Type u_3} [measurable_space α] {μ : measure_theory.measure α} {s : finset ι} {f : ι → set α} (hd : s.pairwise_on (disjoint on f)) (hm : ∀ (b : ι), b sis_measurable (f b)) :
μ (⋃ (b : ι) (H : b s), f b) = ∑ (p : ι) in s, μ (f p)

theorem measure_theory.tsum_measure_preimage_singleton {α : Type u_1} {β : Type u_2} [measurable_space α] {μ : measure_theory.measure α} {s : set β} (hs : s.countable) {f : α → β} (hf : ∀ (y : β), y sis_measurable (f ⁻¹' {y})) :
(∑' (b : s), μ (f ⁻¹' {b})) = μ (f ⁻¹' s)

If s is a countable set, then the measure of its preimage can be found as the sum of measures of the fibers f ⁻¹' {y}.

theorem measure_theory.sum_measure_preimage_singleton {α : Type u_1} {β : Type u_2} [measurable_space α] {μ : measure_theory.measure α} (s : finset β) {f : α → β} (hf : ∀ (y : β), y sis_measurable (f ⁻¹' {y})) :
∑ (b : β) in s, μ (f ⁻¹' {b}) = μ (f ⁻¹' s)

If s is a finset, then the measure of its preimage can be found as the sum of measures of the fibers f ⁻¹' {y}.

theorem measure_theory.measure_diff {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s₁ s₂ : set α} (h : s₂ s₁) (h₁ : is_measurable s₁) (h₂ : is_measurable s₂) (h_fin : μ s₂ < ) :
μ (s₁ \ s₂) = μ s₁ - μ s₂

theorem measure_theory.measure_compl {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s : set α} (h₁ : is_measurable s) (h_fin : μ s < ) :
μ s = μ set.univ - μ s

theorem measure_theory.sum_measure_le_measure_univ {α : Type u_1} {ι : Type u_3} [measurable_space α] {μ : measure_theory.measure α} {s : finset ι} {t : ι → set α} (h : ∀ (i : ι), i sis_measurable (t i)) (H : s.pairwise_on (disjoint on t)) :
∑ (i : ι) in s, μ (t i) μ set.univ

theorem measure_theory.tsum_measure_le_measure_univ {α : Type u_1} {ι : Type u_3} [measurable_space α] {μ : measure_theory.measure α} {s : ι → set α} (hs : ∀ (i : ι), is_measurable (s i)) (H : pairwise (disjoint on s)) :
(∑' (i : ι), μ (s i)) μ set.univ

theorem measure_theory.exists_nonempty_inter_of_measure_univ_lt_tsum_measure {α : Type u_1} {ι : Type u_3} [measurable_space α] (μ : measure_theory.measure α) {s : ι → set α} (hs : ∀ (i : ι), is_measurable (s i)) (H : μ set.univ < ∑' (i : ι), μ (s i)) :
∃ (i j : ι) (h : i j), (s i s j).nonempty

Pigeonhole principle for measure spaces: if ∑' i, μ (s i) > μ univ, then one of the intersections s i ∩ s j is not empty.

theorem measure_theory.exists_nonempty_inter_of_measure_univ_lt_sum_measure {α : Type u_1} {ι : Type u_3} [measurable_space α] (μ : measure_theory.measure α) {s : finset ι} {t : ι → set α} (h : ∀ (i : ι), i sis_measurable (t i)) (H : μ set.univ < ∑ (i : ι) in s, μ (t i)) :
∃ (i : ι) (H : i s) (j : ι) (H : j s) (h : i j), (t i t j).nonempty

Pigeonhole principle for measure spaces: if s is a finset and ∑ i in s, μ (t i) > μ univ, then one of the intersections t i ∩ t j is not empty.

theorem measure_theory.measure_Union_eq_supr {α : Type u_1} {ι : Type u_3} [measurable_space α] {μ : measure_theory.measure α} [encodable ι] {s : ι → set α} (h : ∀ (i : ι), is_measurable (s i)) (hd : directed has_subset.subset s) :
μ (⋃ (i : ι), s i) = ⨆ (i : ι), μ (s i)

Continuity from below: the measure of the union of a directed sequence of measurable sets is the supremum of the measures.

theorem measure_theory.measure_bUnion_eq_supr {α : Type u_1} {ι : Type u_3} [measurable_space α] {μ : measure_theory.measure α} {s : ι → set α} {t : set ι} (ht : t.countable) (h : ∀ (i : ι), i tis_measurable (s i)) (hd : directed_on (has_subset.subset on s) t) :
μ (⋃ (i : ι) (H : i t), s i) = ⨆ (i : ι) (H : i t), μ (s i)

theorem measure_theory.measure_Inter_eq_infi {α : Type u_1} {ι : Type u_3} [measurable_space α] {μ : measure_theory.measure α} [encodable ι] {s : ι → set α} (h : ∀ (i : ι), is_measurable (s i)) (hd : directed superset s) (hfin : ∃ (i : ι), μ (s i) < ) :
μ (⋂ (i : ι), s i) = ⨅ (i : ι), μ (s i)

Continuity from above: the measure of the intersection of a decreasing sequence of measurable sets is the infimum of the measures.

theorem measure_theory.measure_eq_inter_diff {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s t : set α} (hs : is_measurable s) (ht : is_measurable t) :
μ s = μ (s t) + μ (s \ t)

theorem measure_theory.measure_union_add_inter {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s t : set α} (hs : is_measurable s) (ht : is_measurable t) :
μ (s t) + μ (s t) = μ s + μ t

theorem measure_theory.tendsto_measure_Union {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s : set α} (hs : ∀ (n : ), is_measurable (s n)) (hm : monotone s) :
filter.tendsto (μ s) filter.at_top (𝓝 (μ (⋃ (n : ), s n)))

Continuity from below: the measure of the union of an increasing sequence of measurable sets is the limit of the measures.

theorem measure_theory.tendsto_measure_Inter {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s : set α} (hs : ∀ (n : ), is_measurable (s n)) (hm : ∀ ⦃n m : ⦄, n ms m s n) (hf : ∃ (i : ), μ (s i) < ) :
filter.tendsto (μ s) filter.at_top (𝓝 (μ (⋂ (n : ), s n)))

Continuity from above: the measure of the intersection of a decreasing sequence of measurable sets is the limit of the measures.

theorem measure_theory.measure_limsup_eq_zero {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s : set α} (hs : ∀ (i : ), is_measurable (s i)) (hs' : (∑' (i : ), μ (s i)) ) :

One direction of the Borel-Cantelli lemma: if (sᵢ) is a sequence of measurable sets such that ∑ μ sᵢ exists, then the limit superior of the sᵢ is a null set.

Obtain a measure by giving an outer measure where all sets in the σ-algebra are Carathéodory measurable.

Equations
@[simp]
theorem measure_theory.to_measure_apply {α : Type u_1} (m : measure_theory.outer_measure α) [ms : measurable_space α] (h : ms m.caratheodory) {s : set α} (hs : is_measurable s) :
(m.to_measure h) s = m s

theorem measure_theory.le_to_measure_apply {α : Type u_1} (m : measure_theory.outer_measure α) [ms : measurable_space α] (h : ms m.caratheodory) (s : set α) :
m s (m.to_measure h) s

The ennreal-module of measures

@[simp]
theorem measure_theory.measure.coe_zero {α : Type u_1} [measurable_space α] :
0 = 0

@[simp]

@[simp]
theorem measure_theory.measure.coe_add {α : Type u_1} [measurable_space α] (μ₁ μ₂ : measure_theory.measure α) :
(μ₁ + μ₂) = μ₁ + μ₂

theorem measure_theory.measure.add_apply {α : Type u_1} [measurable_space α] (μ₁ μ₂ : measure_theory.measure α) (s : set α) :
(μ₁ + μ₂) s = μ₁ s + μ₂ s

@[simp]
theorem measure_theory.measure.coe_smul {α : Type u_1} [measurable_space α] (c : ennreal) (μ : measure_theory.measure α) :
(c μ) = c μ

theorem measure_theory.measure.smul_apply {α : Type u_1} [measurable_space α] (c : ennreal) (μ : measure_theory.measure α) (s : set α) :
(c μ) s = c * μ s

The complete lattice of measures

@[instance]

Equations
theorem measure_theory.measure.le_iff {α : Type u_1} [measurable_space α] {μ₁ μ₂ : measure_theory.measure α} :
μ₁ μ₂ ∀ (s : set α), is_measurable sμ₁ s μ₂ s

theorem measure_theory.measure.to_outer_measure_le {α : Type u_1} [measurable_space α] {μ₁ μ₂ : measure_theory.measure α} :
μ₁.to_outer_measure μ₂.to_outer_measure μ₁ μ₂

theorem measure_theory.measure.le_iff' {α : Type u_1} [measurable_space α] {μ₁ μ₂ : measure_theory.measure α} :
μ₁ μ₂ ∀ (s : set α), μ₁ s μ₂ s

theorem measure_theory.measure.lt_iff {α : Type u_1} [measurable_space α] {μ ν : measure_theory.measure α} :
μ < ν μ ν ∃ (s : set α), is_measurable s μ s < ν s

theorem measure_theory.measure.lt_iff' {α : Type u_1} [measurable_space α] {μ ν : measure_theory.measure α} :
μ < ν μ ν ∃ (s : set α), μ s < ν s

@[instance]

Equations
@[simp]

theorem measure_theory.measure.add_le_add_left {α : Type u_1} [measurable_space α] {μ₁ μ₂ : measure_theory.measure α} (ν : measure_theory.measure α) (hμ : μ₁ μ₂) :
ν + μ₁ ν + μ₂

theorem measure_theory.measure.add_le_add_right {α : Type u_1} [measurable_space α] {μ₁ μ₂ : measure_theory.measure α} (hμ : μ₁ μ₂) (ν : measure_theory.measure α) :
μ₁ + ν μ₂ + ν

theorem measure_theory.measure.add_le_add {α : Type u_1} [measurable_space α] {μ₁ μ₂ : measure_theory.measure α} (hμ : μ₁ μ₂) {ν₁ ν₂ : measure_theory.measure α} (hν : ν₁ ν₂) :
μ₁ + ν₁ μ₂ + ν₂

theorem measure_theory.measure.zero_le {α : Type u_1} [measurable_space α] (μ : measure_theory.measure α) :
0 μ

theorem measure_theory.measure.le_add_left {α : Type u_1} [measurable_space α] {μ ν ν' : measure_theory.measure α} (h : μ ν) :
μ ν' + ν

theorem measure_theory.measure.le_add_right {α : Type u_1} [measurable_space α] {μ ν ν' : measure_theory.measure α} (h : μ ν) :
μ ν + ν'

Pushforward and pullback

Lift a linear map between outer_measure spaces such that for each measure μ every measurable set is caratheodory-measurable w.r.t. f μ to a linear map between measure spaces.

Equations
def measure_theory.measure.map {α : Type u_1} {β : Type u_2} [measurable_space α] [measurable_space β] (f : α → β) :

The pushforward of a measure. It is defined to be 0 if f is not a measurable function.

Equations
@[simp]
theorem measure_theory.measure.map_apply {α : Type u_1} {β : Type u_2} [measurable_space α] [measurable_space β] {μ : measure_theory.measure α} {f : α → β} (hf : measurable f) {s : set β} (hs : is_measurable s) :

theorem measure_theory.measure.map_map {α : Type u_1} {β : Type u_2} {γ : Type u_3} [measurable_space α] [measurable_space β] [measurable_space γ] {μ : measure_theory.measure α} {g : β → γ} {f : α → β} (hg : measurable g) (hf : measurable f) :

Pullback of a measure. If f sends each measurable set to a measurable set, then for each measurable set s we have comap f μ s = μ (f '' s).

Equations
theorem measure_theory.measure.comap_apply {α : Type u_1} {β : Type u_2} [measurable_space α] [measurable_space β] (f : α → β) (hfi : function.injective f) (hf : ∀ (s : set α), is_measurable sis_measurable (f '' s)) (μ : measure_theory.measure β) {s : set α} (hs : is_measurable s) :

Restricting a measure

Restrict a measure μ to a set s.

Equations
@[simp]
theorem measure_theory.measure.restrict_apply {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s t : set α} (ht : is_measurable t) :
(μ.restrict s) t = μ (t s)

theorem measure_theory.measure.le_restrict_apply {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} (s t : set α) :
μ (t s) (μ.restrict s) t

@[simp]
theorem measure_theory.measure.restrict_add {α : Type u_1} [measurable_space α] (μ ν : measure_theory.measure α) (s : set α) :
+ ν).restrict s = μ.restrict s + ν.restrict s

@[simp]
theorem measure_theory.measure.restrict_zero {α : Type u_1} [measurable_space α] (s : set α) :
0.restrict s = 0

@[simp]
theorem measure_theory.measure.restrict_smul {α : Type u_1} [measurable_space α] (c : ennreal) (μ : measure_theory.measure α) (s : set α) :
(c μ).restrict s = c μ.restrict s

@[simp]
theorem measure_theory.measure.restrict_restrict {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s t : set α} (hs : is_measurable s) :
(μ.restrict t).restrict s = μ.restrict (s t)

theorem measure_theory.measure.restrict_apply_eq_zero {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s t : set α} (ht : is_measurable t) :
(μ.restrict s) t = 0 μ (t s) = 0

theorem measure_theory.measure.restrict_apply_eq_zero' {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s t : set α} (hs : is_measurable s) :
(μ.restrict s) t = 0 μ (t s) = 0

@[simp]
theorem measure_theory.measure.restrict_eq_zero {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s : set α} :
μ.restrict s = 0 μ s = 0

@[simp]

theorem measure_theory.measure.restrict_union_apply {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s s' t : set α} (h : disjoint (t s) (t s')) (hs : is_measurable s) (hs' : is_measurable s') (ht : is_measurable t) :
(μ.restrict (s s')) t = (μ.restrict s) t + (μ.restrict s') t

theorem measure_theory.measure.restrict_union {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s t : set α} (h : disjoint s t) (hs : is_measurable s) (ht : is_measurable t) :
μ.restrict (s t) = μ.restrict s + μ.restrict t

theorem measure_theory.measure.restrict_union_add_inter {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s t : set α} (hs : is_measurable s) (ht : is_measurable t) :
μ.restrict (s t) + μ.restrict (s t) = μ.restrict s + μ.restrict t

@[simp]

@[simp]

theorem measure_theory.measure.restrict_union_le {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} (s s' : set α) :
μ.restrict (s s') μ.restrict s + μ.restrict s'

theorem measure_theory.measure.restrict_Union_apply {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {ι : Type u_2} [encodable ι] {s : ι → set α} (hd : pairwise (disjoint on s)) (hm : ∀ (i : ι), is_measurable (s i)) {t : set α} (ht : is_measurable t) :
(μ.restrict (⋃ (i : ι), s i)) t = ∑' (i : ι), (μ.restrict (s i)) t

theorem measure_theory.measure.restrict_Union_apply_eq_supr {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {ι : Type u_2} [encodable ι] {s : ι → set α} (hm : ∀ (i : ι), is_measurable (s i)) (hd : directed has_subset.subset s) {t : set α} (ht : is_measurable t) :
(μ.restrict (⋃ (i : ι), s i)) t = ⨆ (i : ι), (μ.restrict (s i)) t

theorem measure_theory.measure.restrict_map {α : Type u_1} {β : Type u_2} [measurable_space α] [measurable_space β] {μ : measure_theory.measure α} {f : α → β} (hf : measurable f) {s : set β} (hs : is_measurable s) :

theorem measure_theory.measure.restrict_mono {α : Type u_1} [measurable_space α] ⦃s s' : set α⦄ (hs : s s') ⦃μ ν : measure_theory.measure α⦄ (hμν : μ ν) :
μ.restrict s ν.restrict s'

Restriction of a measure to a subset is monotone both in set and in measure.

theorem measure_theory.measure.restrict_le_self {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s : set α} :
μ.restrict s μ

theorem measure_theory.measure.restrict_congr_meas {α : Type u_1} [measurable_space α] {μ ν : measure_theory.measure α} {s : set α} (hs : is_measurable s) :
μ.restrict s = ν.restrict s ∀ (t : set α), t sis_measurable tμ t = ν t

theorem measure_theory.measure.restrict_congr_mono {α : Type u_1} [measurable_space α] {μ ν : measure_theory.measure α} {s t : set α} (hs : s t) (hm : is_measurable s) (h : μ.restrict t = ν.restrict t) :
μ.restrict s = ν.restrict s

theorem measure_theory.measure.restrict_union_congr {α : Type u_1} [measurable_space α] {μ ν : measure_theory.measure α} {s t : set α} (hsm : is_measurable s) (htm : is_measurable t) :
μ.restrict (s t) = ν.restrict (s t) μ.restrict s = ν.restrict s μ.restrict t = ν.restrict t

If two measures agree on all measurable subsets of s and t, then they agree on all measurable subsets of s ∪ t.

theorem measure_theory.measure.restrict_finset_bUnion_congr {α : Type u_1} [measurable_space α] {μ ν : measure_theory.measure α} {ι : Type u_4} {s : finset ι} {t : ι → set α} (htm : ∀ (i : ι), i sis_measurable (t i)) :
μ.restrict (⋃ (i : ι) (H : i s), t i) = ν.restrict (⋃ (i : ι) (H : i s), t i) ∀ (i : ι), i sμ.restrict (t i) = ν.restrict (t i)

theorem measure_theory.measure.restrict_Union_congr {α : Type u_1} [measurable_space α] {μ ν : measure_theory.measure α} {ι : Type u_4} [encodable ι] {s : ι → set α} (hm : ∀ (i : ι), is_measurable (s i)) :
μ.restrict (⋃ (i : ι), s i) = ν.restrict (⋃ (i : ι), s i) ∀ (i : ι), μ.restrict (s i) = ν.restrict (s i)

theorem measure_theory.measure.restrict_bUnion_congr {α : Type u_1} [measurable_space α] {μ ν : measure_theory.measure α} {ι : Type u_4} {s : set ι} {t : ι → set α} (hc : s.countable) (htm : ∀ (i : ι), i sis_measurable (t i)) :
μ.restrict (⋃ (i : ι) (H : i s), t i) = ν.restrict (⋃ (i : ι) (H : i s), t i) ∀ (i : ι), i sμ.restrict (t i) = ν.restrict (t i)

theorem measure_theory.measure.restrict_sUnion_congr {α : Type u_1} [measurable_space α] {μ ν : measure_theory.measure α} {S : set (set α)} (hc : S.countable) (hm : ∀ (s : set α), s Sis_measurable s) :
μ.restrict (⋃₀S) = ν.restrict (⋃₀S) ∀ (s : set α), s Sμ.restrict s = ν.restrict s

Extensionality results

theorem measure_theory.measure.ext_iff_of_Union_eq_univ {α : Type u_1} [measurable_space α] {μ ν : measure_theory.measure α} {ι : Type u_4} [encodable ι] {s : ι → set α} (hm : ∀ (i : ι), is_measurable (s i)) (hs : (⋃ (i : ι), s i) = set.univ) :
μ = ν ∀ (i : ι), μ.restrict (s i) = ν.restrict (s i)

Two measures are equal if they have equal restrictions on a spanning collection of sets (formulated using Union).

theorem measure_theory.measure.ext_iff_of_bUnion_eq_univ {α : Type u_1} [measurable_space α] {μ ν : measure_theory.measure α} {ι : Type u_4} {S : set ι} {s : ι → set α} (hc : S.countable) (hm : ∀ (i : ι), i Sis_measurable (s i)) (hs : (⋃ (i : ι) (H : i S), s i) = set.univ) :
μ = ν ∀ (i : ι), i Sμ.restrict (s i) = ν.restrict (s i)

Two measures are equal if they have equal restrictions on a spanning collection of sets (formulated using bUnion).

theorem measure_theory.measure.ext_iff_of_sUnion_eq_univ {α : Type u_1} [measurable_space α] {μ ν : measure_theory.measure α} {S : set (set α)} (hc : S.countable) (hm : ∀ (s : set α), s Sis_measurable s) (hs : ⋃₀S = set.univ) :
μ = ν ∀ (s : set α), s Sμ.restrict s = ν.restrict s

Two measures are equal if they have equal restrictions on a spanning collection of sets (formulated using sUnion).

theorem measure_theory.measure.ext_of_generate_from_of_cover {α : Type u_1} [measurable_space α] {μ ν : measure_theory.measure α} {S T : set (set α)} (h_gen : _inst_1 = measurable_space.generate_from S) (hc : T.countable) (h_inter : is_pi_system S) (hm : ∀ (t : set α), t Tis_measurable t) (hU : ⋃₀T = set.univ) (htop : ∀ (t : set α), t Tμ t < ) (ST_eq : ∀ (t : set α), t T∀ (s : set α), s Sμ (s t) = ν (s t)) (T_eq : ∀ (t : set α), t Tμ t = ν t) :
μ = ν

theorem measure_theory.measure.ext_of_generate_from_of_cover_subset {α : Type u_1} [measurable_space α] {μ ν : measure_theory.measure α} {S T : set (set α)} (h_gen : _inst_1 = measurable_space.generate_from S) (h_inter : is_pi_system S) (h_sub : T S) (hc : T.countable) (hU : ⋃₀T = set.univ) (htop : ∀ (s : set α), s Tμ s < ) (h_eq : ∀ (s : set α), s Sμ s = ν s) :
μ = ν

Two measures are equal if they are equal on the π-system generating the σ-algebra, and they are both finite on a increasing spanning sequence of sets in the π-system. This lemma is formulated using sUnion.

theorem measure_theory.measure.ext_of_generate_from_of_Union {α : Type u_1} [measurable_space α] {μ ν : measure_theory.measure α} (C : set (set α)) (B : set α) (hA : _inst_1 = measurable_space.generate_from C) (hC : is_pi_system C) (h1B : (⋃ (i : ), B i) = set.univ) (h2B : ∀ (i : ), B i C) (hμB : ∀ (i : ), μ (B i) < ) (h_eq : ∀ (s : set α), s Cμ s = ν s) :
μ = ν

Two measures are equal if they are equal on the π-system generating the σ-algebra, and they are both finite on a increasing spanning sequence of sets in the π-system. This lemma is formulated using Union.

theorem measure_theory.measure.dirac_apply' {α : Type u_1} [measurable_space α] (a : α) {s : set α} (hs : is_measurable s) :
(measure_theory.measure.dirac a) s = ⨆ (h : a s), 1

@[simp]
theorem measure_theory.measure.dirac_apply {α : Type u_1} [measurable_space α] (a : α) {s : set α} (hs : is_measurable s) :

theorem measure_theory.measure.dirac_apply_of_mem {α : Type u_1} [measurable_space α] {a : α} {s : set α} (h : a s) :

def measure_theory.measure.sum {α : Type u_1} [measurable_space α] {ι : Type u_2} (f : ι → measure_theory.measure α) :

Sum of an indexed family of measures.

Equations
@[simp]
theorem measure_theory.measure.sum_apply {α : Type u_1} [measurable_space α] {ι : Type u_2} (f : ι → measure_theory.measure α) {s : set α} (hs : is_measurable s) :
(measure_theory.measure.sum f) s = ∑' (i : ι), (f i) s

theorem measure_theory.measure.le_sum {α : Type u_1} [measurable_space α] {ι : Type u_2} (μ : ι → measure_theory.measure α) (i : ι) :

theorem measure_theory.measure.restrict_Union {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {ι : Type u_2} [encodable ι] {s : ι → set α} (hd : pairwise (disjoint on s)) (hm : ∀ (i : ι), is_measurable (s i)) :
μ.restrict (⋃ (i : ι), s i) = measure_theory.measure.sum (λ (i : ι), μ.restrict (s i))

theorem measure_theory.measure.restrict_Union_le {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {ι : Type u_2} [encodable ι] {s : ι → set α} :
μ.restrict (⋃ (i : ι), s i) measure_theory.measure.sum (λ (i : ι), μ.restrict (s i))

@[simp]
theorem measure_theory.measure.restrict_sum {α : Type u_1} [measurable_space α] {ι : Type u_2} (μ : ι → measure_theory.measure α) {s : set α} (hs : is_measurable s) :

theorem measure_theory.measure.count_apply {α : Type u_1} [measurable_space α] {s : set α} (hs : is_measurable s) :

count measure evaluates to infinity at infinite sets.

The almost everywhere filter

def measure_theory.measure.ae {α : Type u_1} [measurable_space α] (μ : measure_theory.measure α) :

The “almost everywhere” filter of co-null sets.

Equations

The filter of sets s such that sᶜ has finite measure.

Equations
theorem measure_theory.measure.mem_cofinite {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s : set α} :

theorem measure_theory.measure.eventually_cofinite {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {p : α → Prop} :
(∀ᶠ (x : α) in μ.cofinite, p x) μ {x : α | ¬p x} <

theorem measure_theory.mem_ae_iff {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s : set α} :
s μ.ae μ s = 0

theorem measure_theory.ae_iff {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {p : α → Prop} :
(∀ᵐ (a : α) ∂μ, p a) μ {a : α | ¬p a} = 0

theorem measure_theory.compl_mem_ae_iff {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s : set α} :
s μ.ae μ s = 0

theorem measure_theory.measure_zero_iff_ae_nmem {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s : set α} :
μ s = 0 ∀ᵐ (a : α) ∂μ, a s

@[simp]
theorem measure_theory.ae_eq_bot {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} :
μ.ae = μ = 0

theorem measure_theory.ae_of_all {α : Type u_1} [measurable_space α] {p : α → Prop} (μ : measure_theory.measure α) (a : ∀ (a : α), p a) :
∀ᵐ (a : α) ∂μ, p a

theorem measure_theory.ae_mono {α : Type u_1} [measurable_space α] {μ ν : measure_theory.measure α} (h : μ ν) :
μ.ae ν.ae

theorem measure_theory.ae_all_iff {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {ι : Type u_2} [encodable ι] {p : α → ι → Prop} :
(∀ᵐ (a : α) ∂μ, ∀ (i : ι), p a i) ∀ (i : ι), ∀ᵐ (a : α) ∂μ, p a i

theorem measure_theory.ae_ball_iff {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {ι : Type u_2} {S : set ι} (hS : S.countable) {p : α → Π (i : ι), i S → Prop} :
(∀ᵐ (x : α) ∂μ, ∀ (i : ι) (H : i S), p x i H) ∀ (i : ι) (H : i S), ∀ᵐ (x : α) ∂μ, p x i H

theorem measure_theory.ae_eq_refl {α : Type u_1} {β : Type u_2} [measurable_space α] {μ : measure_theory.measure α} (f : α → β) :
f =ᵐ[μ] f

theorem measure_theory.ae_eq_symm {α : Type u_1} {β : Type u_2} [measurable_space α] {μ : measure_theory.measure α} {f g : α → β} (h : f =ᵐ[μ] g) :
g =ᵐ[μ] f

theorem measure_theory.ae_eq_trans {α : Type u_1} {β : Type u_2} [measurable_space α] {μ : measure_theory.measure α} {f g h : α → β} (h₁ : f =ᵐ[μ] g) (h₂ : g =ᵐ[μ] h) :
f =ᵐ[μ] h

theorem measure_theory.ae_eq_empty {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s : set α} :
s =ᵐ[μ] μ s = 0

theorem measure_theory.ae_le_set {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s t : set α} :
s ≤ᵐ[μ] t μ (s \ t) = 0

theorem measure_theory.union_ae_eq_right {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s t : set α} :
s t =ᵐ[μ] t μ (s \ t) = 0

theorem measure_theory.diff_ae_eq_self {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s t : set α} :
s \ t =ᵐ[μ] s μ (s t) = 0

theorem measure_theory.mem_ae_map_iff {α : Type u_1} {β : Type u_2} [measurable_space α] {μ : measure_theory.measure α} [measurable_space β] {f : α → β} (hf : measurable f) {s : set β} (hs : is_measurable s) :

theorem measure_theory.ae_map_iff {α : Type u_1} {β : Type u_2} [measurable_space α] {μ : measure_theory.measure α} [measurable_space β] {f : α → β} (hf : measurable f) {p : β → Prop} (hp : is_measurable {x : β | p x}) :
(∀ᵐ (y : β) ∂(measure_theory.measure.map f) μ, p y) ∀ᵐ (x : α) ∂μ, p (f x)

theorem measure_theory.ae_restrict_iff {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s : set α} {p : α → Prop} (hp : is_measurable {x : α | p x}) :
(∀ᵐ (x : α) ∂μ.restrict s, p x) ∀ᵐ (x : α) ∂μ, x sp x

theorem measure_theory.ae_smul_measure {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {p : α → Prop} (h : ∀ᵐ (x : α) ∂μ, p x) (c : ennreal) :
∀ᵐ (x : α) ∂c μ, p x

theorem measure_theory.ae_add_measure_iff {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {p : α → Prop} {ν : measure_theory.measure α} :
(∀ᵐ (x : α) ∂μ + ν, p x) (∀ᵐ (x : α) ∂μ, p x) ∀ᵐ (x : α) ∂ν, p x

@[simp]
theorem measure_theory.ae_restrict_eq {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s : set α} (hs : is_measurable s) :
(μ.restrict s).ae = μ.ae 𝓟 s

@[simp]
theorem measure_theory.ae_restrict_eq_bot {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s : set α} :
(μ.restrict s).ae = μ s = 0

@[simp]
theorem measure_theory.ae_restrict_ne_bot {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s : set α} :
(μ.restrict s).ae.ne_bot 0 < μ s

theorem measure_theory.ae_eventually_not_mem {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s : set α} (hs : ∀ (i : ), is_measurable (s i)) (hs' : (∑' (i : ), μ (s i)) ) :
∀ᵐ (x : α) ∂μ, ∀ᶠ (n : ) in filter.at_top, x s n

A version of the Borel-Cantelli lemma: if sᵢ is a sequence of measurable sets such that ∑ μ sᵢ exists, then for almost all x, x does not belong to almost all sᵢ.

theorem measure_theory.mem_dirac_ae_iff {α : Type u_1} [measurable_space α] {a : α} {s : set α} (hs : is_measurable s) :

theorem measure_theory.eventually_dirac {α : Type u_1} [measurable_space α] {a : α} {p : α → Prop} (hp : is_measurable {x : α | p x}) :
(∀ᵐ (x : α) ∂measure_theory.measure.dirac a, p x) p a

theorem measure_theory.eventually_eq_dirac {α : Type u_1} {β : Type u_2} [measurable_space α] [measurable_space β] [measurable_singleton_class β] {a : α} {f : α → β} (hf : measurable f) :

theorem measure_theory.eventually_eq_dirac' {α : Type u_1} {β : Type u_2} [measurable_space α] [measurable_singleton_class α] {a : α} (f : α → β) :

theorem measure_theory.measure_diff_of_ae_le {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s t : set α} (H : s ≤ᵐ[μ] t) :
μ (s \ t) = 0

theorem measure_theory.measure_mono_ae {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s t : set α} (H : s ≤ᵐ[μ] t) :
μ s μ t

If s ⊆ t modulo a set of measure 0, then μ s ≤ μ t.

theorem measure_theory.measure_congr {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s t : set α} (H : s =ᵐ[μ] t) :
μ s = μ t

If two sets are equal modulo a set of measure zero, then μ s = μ t.

theorem measure_theory.restrict_mono_ae {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s t : set α} (h : s ≤ᵐ[μ] t) :

theorem measure_theory.restrict_congr_set {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s t : set α} (H : s =ᵐ[μ] t) :
μ.restrict s = μ.restrict t

@[class]
structure measure_theory.probability_measure {α : Type u_1} [measurable_space α] (μ : measure_theory.measure α) :
Prop

A measure μ is called a probability measure if μ univ = 1.

@[class]
structure measure_theory.finite_measure {α : Type u_1} [measurable_space α] (μ : measure_theory.measure α) :
Prop

A measure μ is called finite if μ univ < ⊤.

Instances
@[instance]

@[class]
structure measure_theory.has_no_atoms {α : Type u_1} [measurable_space α] (μ : measure_theory.measure α) :
Prop
  • measure_singleton : ∀ (x : α), μ {x} = 0

Measure μ has no atoms if the measure of each singleton is zero.

NB: Wikipedia assumes that for any measurable set s with positive μ-measure, there exists a measurable t ⊆ s such that 0 < μ t < μ s. While this implies μ {x} = 0, the converse is not true.

Instances
theorem measure_theory.measure_countable {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} [measure_theory.has_no_atoms μ] {s : set α} (h : s.countable) :
μ s = 0

theorem measure_theory.measure_finite {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} [measure_theory.has_no_atoms μ] {s : set α} (h : s.finite) :
μ s = 0

theorem measure_theory.insert_ae_eq_self {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} [measure_theory.has_no_atoms μ] (a : α) (s : set α) :
insert a s =ᵐ[μ] s

def measure_theory.measure.finite_at_filter {α : Type u_1} [measurable_space α] (μ : measure_theory.measure α) (f : filter α) :
Prop

A measure is called finite at filter f if it is finite at some set s ∈ f. Equivalently, it is eventually finite at s in f.lift' powerset.

Equations
@[class]
structure measure_theory.sigma_finite {α : Type u_1} [measurable_space α] (μ : measure_theory.measure α) :
Prop

A measure μ is called σ-finite if there is a countable collection of sets { A i | i ∈ ℕ } such that μ (A i) < ⊤ and ⋃ i, A i = s.

Instances
theorem measure_theory.exists_finite_spanning_sets {α : Type u_1} [measurable_space α] (μ : measure_theory.measure α) [measure_theory.sigma_finite μ] :
∃ (s : set α), (∀ (i : ), is_measurable (s i)) (∀ (i : ), μ (s i) < ) (⋃ (i : ), s i) = set.univ

A noncomputable way to get a monotone collection of sets that span univ and have finite measure using classical.some. This definition satisfies monotonicity in addition to all other properties in sigma_finite.

Equations
@[instance]

Every finite measure is σ-finite.

@[class]

A measure is called locally finite if it is finite in some neighborhood of each point.

Instances
theorem measure_theory.ext_of_generate_finite {α : Type u_1} [measurable_space α] (C : set (set α)) (hA : _inst_1 = measurable_space.generate_from C) (hC : is_pi_system C) {μ ν : measure_theory.measure α} [measure_theory.finite_measure μ] [measure_theory.finite_measure ν] (hμν : ∀ (s : set α), s Cμ s = ν s) (h_univ : μ set.univ = ν set.univ) :
μ = ν

Two finite measures are equal if they are equal on the π-system generating the σ-algebra (and univ).

theorem measure_theory.measure.finite_at_filter.mono {α : Type u_1} [measurable_space α] {μ ν : measure_theory.measure α} {f g : filter α} (hf : f g) (hμ : μ ν) (a : ν.finite_at_filter g) :

theorem measure_theory.measure.finite_at_filter.eventually {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {f : filter α} (h : μ.finite_at_filter f) :
∀ᶠ (s : set α) in f.lift' set.powerset, μ s <

@[simp]

@[class]
def measure_theory.measure.is_complete {α : Type u_1} {_x : measurable_space α} (μ : measure_theory.measure α) :
Prop

A measure is complete if every null set is also measurable. A null set is a subset of a measurable set with measure 0. Since every measure is defined as a special case of an outer measure, we can more simply state that a set s is null if μ s = 0.

Equations
Instances
def is_null_measurable {α : Type u_1} [measurable_space α] (μ : measure_theory.measure α) (s : set α) :
Prop

A set is null measurable if it is the union of a null set and a measurable set.

Equations
theorem is_null_measurable_iff {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s : set α} :
is_null_measurable μ s ∃ (t : set α), t s is_measurable t μ (s \ t) = 0

theorem is_null_measurable_measure_eq {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s t : set α} (st : t s) (hz : μ (s \ t) = 0) :
μ s = μ t

theorem is_null_measurable.union_null {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s z : set α} (hs : is_null_measurable μ s) (hz : μ z = 0) :

theorem null_is_null_measurable {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {z : set α} (hz : μ z = 0) :

theorem is_null_measurable.Union_nat {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s : set α} (hs : ∀ (i : ), is_null_measurable μ (s i)) :

theorem is_measurable.diff_null {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s z : set α} (hs : is_measurable s) (hz : μ z = 0) :

theorem is_null_measurable.diff_null {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s z : set α} (hs : is_null_measurable μ s) (hz : μ z = 0) :

theorem is_null_measurable.compl {α : Type u_1} [measurable_space α] {μ : measure_theory.measure α} {s : set α} (hs : is_null_measurable μ s) :

The measurable space of all null measurable sets.

Equations

Given a measure we can complete it to a (complete) measure on all null measurable sets.

Equations
@[instance]

@[class]
structure measure_theory.measure_space (α : Type u_1) :
Type u_1

A measure space is a measurable space equipped with a measure, referred to as volume.

Instances

The tactic exact volume, to be used in optional (auto_param) arguments.

theorem is_compact.finite_measure_of_nhds_within {α : Type u_1} [topological_space α] [measurable_space α] {μ : measure_theory.measure α} {s : set α} (hs : is_compact s) (a : ∀ (a : α), a sμ.finite_at_filter (𝓝[s] a)) :
μ s <

theorem is_compact.measure_zero_of_nhds_within {α : Type u_1} [topological_space α] [measurable_space α] {μ : measure_theory.measure α} {s : set α} (hs : is_compact s) (a : ∀ (a : α), a s(∃ (t : set α) (H : t 𝓝[s] a), μ t = 0)) :
μ s = 0