Quotients of non-commutative rings
Unfortunately, ideals have only been developed in the commutative case as ideal
,
and it's not immediately clear how one should formalise ideals in the non-commutative case.
In this file, we directly define the quotient of a semiring by any relation, by building a bigger relation that represents the ideal generated by that relation.
We prove the universal properties of the quotient, and recommend avoiding relying on the actual definition!
Since everything runs in parallel for quotients of R
-algebras, we do that case at the same time.
- of : ∀ {R : Type u₁} [_inst_1 : semiring R] (r : R → R → Prop) ⦃x y : R⦄, r x y → ring_quot.rel r x y
- add_left : ∀ {R : Type u₁} [_inst_1 : semiring R] (r : R → R → Prop) ⦃a b c : R⦄, ring_quot.rel r a b → ring_quot.rel r (a + c) (b + c)
- mul_left : ∀ {R : Type u₁} [_inst_1 : semiring R] (r : R → R → Prop) ⦃a b c : R⦄, ring_quot.rel r a b → ring_quot.rel r (a * c) (b * c)
- mul_right : ∀ {R : Type u₁} [_inst_1 : semiring R] (r : R → R → Prop) ⦃a b c : R⦄, ring_quot.rel r b c → ring_quot.rel r (a * b) (a * c)
Given an arbitrary relation r
on a ring, we strengthen it to a relation rel r
,
such that the equivalence relation generated by rel r
has x ~ y
if and only if
x - y
is in the ideal generated by elements a - b
such that r a b
.
Equations
- ring_quot.semiring r = {add := quot.map₂ has_add.add ring_quot.rel.add_right ring_quot.rel.add_left, add_assoc := _, zero := quot.mk (ring_quot.rel r) 0, zero_add := _, add_zero := _, add_comm := _, mul := quot.map₂ has_mul.mul ring_quot.rel.mul_right ring_quot.rel.mul_left, mul_assoc := _, one := quot.mk (ring_quot.rel r) 1, one_mul := _, mul_one := _, zero_mul := _, mul_zero := _, left_distrib := _, right_distrib := _}
Equations
- ring_quot.ring r = {add := semiring.add (ring_quot.semiring r), add_assoc := _, zero := semiring.zero (ring_quot.semiring r), zero_add := _, add_zero := _, neg := quot.map (λ (a : R), -a) ring_quot.rel.neg, add_left_neg := _, add_comm := _, mul := semiring.mul (ring_quot.semiring r), mul_assoc := _, one := semiring.one (ring_quot.semiring r), one_mul := _, mul_one := _, left_distrib := _, right_distrib := _}
Equations
- ring_quot.comm_semiring r = {add := semiring.add (ring_quot.semiring r), add_assoc := _, zero := semiring.zero (ring_quot.semiring r), zero_add := _, add_zero := _, add_comm := _, mul := semiring.mul (ring_quot.semiring r), mul_assoc := _, one := semiring.one (ring_quot.semiring r), one_mul := _, mul_one := _, zero_mul := _, mul_zero := _, left_distrib := _, right_distrib := _, mul_comm := _}
Equations
- ring_quot.comm_ring r = {add := comm_semiring.add (ring_quot.comm_semiring r), add_assoc := _, zero := comm_semiring.zero (ring_quot.comm_semiring r), zero_add := _, add_zero := _, neg := ring.neg (ring_quot.ring r), add_left_neg := _, add_comm := _, mul := comm_semiring.mul (ring_quot.comm_semiring r), mul_assoc := _, one := comm_semiring.one (ring_quot.comm_semiring r), one_mul := _, mul_one := _, left_distrib := _, right_distrib := _, mul_comm := _}
Equations
- ring_quot.algebra s = {to_has_scalar := {smul := λ (r : S), quot.map (has_scalar.smul r) _}, to_ring_hom := {to_fun := λ (r : S), quot.mk (ring_quot.rel s) (⇑(algebra_map S A) r), map_one' := _, map_mul' := _, map_zero' := _, map_add' := _}, commutes' := _, smul_def' := _}
Equations
- ring_quot.inhabited r = {default := 0}
The quotient map from a ring to its quotient, as a homomorphism of rings.
Equations
- ring_quot.mk_ring_hom r = {to_fun := quot.mk (ring_quot.rel r), map_one' := _, map_mul' := _, map_zero' := _, map_add' := _}
We now verify that in the case of a commutative ring, the ring_quot
construction
agrees with the quotient by the appropriate ideal.
The universal ring homomorphism from ring_quot r
to (ideal.of_rel r).quotient
.
Equations
The universal ring homomorphism from (ideal.of_rel r).quotient
to ring_quot r
.
Equations
The ring equivalence between ring_quot r
and (ideal.of_rel r).quotient
The quotient map from an S
-algebra to its quotient, as a homomorphism of S
-algebras.
Any S
-algebra homomorphism f : A →ₐ[S] B
which respects a relation s : A → A → Prop
factors through a morphism ring_quot s →ₐ[S] B
.