mathlib documentation

topology.instances.real

Topological properties of ℝ

@[instance]

Equations
theorem rat.dist_eq (x y : ) :
dist x y = abs (x - y)

@[simp]
theorem rat.dist_cast (x y : ) :
dist x y = dist x y

@[instance]

Equations
theorem int.dist_eq (x y : ) :
dist x y = abs (x - y)

@[simp]
theorem int.dist_cast_real (x y : ) :
dist x y = dist x y

@[simp]
theorem int.dist_cast_rat (x y : ) :
dist x y = dist x y

theorem real.uniform_continuous_inv (s : set ) {r : } (r0 : 0 < r) (H : ∀ (x : ), x sr abs x) :

theorem real.tendsto_inv {r : } (r0 : r 0) :
(λ (q : ), q⁻¹)→_{r}r⁻¹

theorem real.continuous_inv  :
continuous (λ (a : {r // r 0}), (a.val)⁻¹)

theorem real.continuous.inv {α : Type u} [topological_space α] {f : α → } (h : ∀ (a : α), f a 0) (hf : continuous f) :
continuous (λ (a : α), (f a)⁻¹)

theorem real.uniform_continuous_mul (s : set ( × )) {r₁ r₂ : } (H : ∀ (x : × ), x sabs x.fst < r₁ abs x.snd < r₂) :
uniform_continuous (λ (p : s), (p.val.fst) * p.val.snd)

theorem real.continuous_mul  :
continuous (λ (p : × ), (p.fst) * p.snd)

theorem rat.continuous_mul  :
continuous (λ (p : × ), (p.fst) * p.snd)

theorem real.ball_eq_Ioo (x ε : ) :
metric.ball x ε = set.Ioo (x - ε) (x + ε)

theorem real.Ioo_eq_ball (x y : ) :
set.Ioo x y = metric.ball ((x + y) / 2) ((y - x) / 2)

theorem closure_of_rat_image_lt {q : } :
closure (coe '' {x : | q < x}) = {r : | q r}

theorem compact_Icc {a b : } :

theorem real.image_Icc {f : } {a b : } (hab : a b) (h : continuous_on f (set.Icc a b)) :
f '' set.Icc a b = set.Icc (Inf (f '' set.Icc a b)) (Sup (f '' set.Icc a b))