Topological properties of ℝ
@[instance]
Equations
- rat.metric_space = metric_space.induced coe rat.metric_space._proof_1 real.metric_space
@[instance]
Equations
- int.metric_space = let M : metric_space ℤ := metric_space.induced coe int.metric_space._proof_1 real.metric_space in M.replace_uniformity int.metric_space._proof_2
theorem
real.continuous.inv
{α : Type u}
[topological_space α]
{f : α → ℝ}
(h : ∀ (a : α), f a ≠ 0)
(hf : continuous f) :
continuous (λ (a : α), (f a)⁻¹)
theorem
real.bounded_iff_bdd_below_bdd_above
{s : set ℝ} :
metric.bounded s ↔ bdd_below s ∧ bdd_above s