theorem
inv_unique
{M : Type u}
[comm_monoid M]
{x y z : M}
(hy : x * y = 1)
(hz : x * z = 1) :
y = z
theorem
neg_unique
{M : Type u}
[add_comm_monoid M]
{x y z : M}
(hy : x + y = 0)
(hz : x + z = 0) :
y = z
theorem
eq_one_of_mul_self_left_cancel
{M : Type u}
[left_cancel_monoid M]
{a : M}
(h : a * a = a) :
a = 1
theorem
eq_zero_of_add_self_left_cancel
{M : Type u}
[add_left_cancel_monoid M]
{a : M}
(h : a + a = a) :
a = 0
theorem
eq_zero_of_left_cancel_add_self
{M : Type u}
[add_left_cancel_monoid M]
{a : M}
(h : a = a + a) :
a = 0
theorem
eq_one_of_left_cancel_mul_self
{M : Type u}
[left_cancel_monoid M]
{a : M}
(h : a = a * a) :
a = 1
theorem
eq_zero_of_add_self_right_cancel
{M : Type u}
[add_right_cancel_monoid M]
{a : M}
(h : a + a = a) :
a = 0
theorem
eq_one_of_mul_self_right_cancel
{M : Type u}
[right_cancel_monoid M]
{a : M}
(h : a * a = a) :
a = 1
theorem
eq_one_of_right_cancel_mul_self
{M : Type u}
[right_cancel_monoid M]
{a : M}
(h : a = a * a) :
a = 1
theorem
eq_zero_of_right_cancel_add_self
{M : Type u}
[add_right_cancel_monoid M]
{a : M}
(h : a = a + a) :
a = 0
theorem
left_inverse_neg
(G : Type u_1)
[add_group G] :
function.left_inverse (λ (a : G), -a) (λ (a : G), -a)
theorem
left_inverse_inv
(G : Type u_1)
[group G] :
function.left_inverse (λ (a : G), a⁻¹) (λ (a : G), a⁻¹)
theorem
add_right_surjective
{G : Type u}
[add_group G]
(a : G) :
function.surjective (λ (x : G), x + a)
theorem
mul_right_surjective
{G : Type u}
[group G]
(a : G) :
function.surjective (λ (x : G), x * a)
theorem
left_inverse_sub_add_left
{G : Type u}
[add_group G]
(c : G) :
function.left_inverse (λ (x : G), x - c) (λ (x : G), x + c)
theorem
left_inverse_add_left_sub
{G : Type u}
[add_group G]
(c : G) :
function.left_inverse (λ (x : G), x + c) (λ (x : G), x - c)
theorem
left_inverse_add_right_neg_add
{G : Type u}
[add_group G]
(c : G) :
function.left_inverse (λ (x : G), c + x) (λ (x : G), -c + x)
theorem
left_inverse_neg_add_add_right
{G : Type u}
[add_group G]
(c : G) :
function.left_inverse (λ (x : G), -c + x) (λ (x : G), c + x)
@[simp]
@[simp]
@[simp]