@[class]
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- le_trans : ∀ (a b c_1 : α), a ≤ b → b ≤ c_1 → a ≤ c_1
- lt_iff_le_not_le : (∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a) . "order_laws_tac"
A preorder is a reflexive, transitive relation ≤
with a < b
defined in the obvious way.
Instances
- partial_order.to_preorder
- directed_order.to_preorder
- order_dual.preorder
- pi.preorder
- subtype.preorder
- prod.preorder
- with_bot.preorder
- with_top.preorder
- units.preorder
- add_units.preorder
- with_zero.preorder
- multiplicative.preorder
- additive.preorder
- rat.preorder
- associates.preorder
- finsupp.preorder
- roption.preorder
- cau_seq.preorder
- real.preorder
- measure_theory.simple_func.preorder
- filter.germ.preorder
- measure_theory.ae_eq_fun.preorder
- category_theory.thin_skeleton.preorder
- preorder_hom.preorder
- bitvec.preorder
- zsqrtd.preorder
- Preorder.preorder
- lex_preorder
- dlex_preorder
- onote.preorder
- nonote.preorder
- surreal.preorder
@[class]
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- le_trans : ∀ (a b c_1 : α), a ≤ b → b ≤ c_1 → a ≤ c_1
- lt_iff_le_not_le : (∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a) . "order_laws_tac"
- le_antisymm : ∀ (a b : α), a ≤ b → b ≤ a → a = b
A partial order is a reflexive, transitive, antisymmetric relation ≤
.
Instances
- omega_complete_partial_order.to_partial_order
- linear_order.to_partial_order
- semilattice_sup.to_partial_order
- semilattice_inf.to_partial_order
- order_top.to_partial_order
- order_bot.to_partial_order
- ordered_comm_monoid.to_partial_order
- ordered_add_comm_monoid.to_partial_order
- ordered_cancel_add_comm_monoid.to_partial_order
- ordered_cancel_comm_monoid.to_partial_order
- ordered_add_comm_group.to_partial_order
- ordered_comm_group.to_partial_order
- order_dual.partial_order
- pi.partial_order
- subtype.partial_order
- prod.partial_order
- with_bot.partial_order
- with_top.partial_order
- units.partial_order
- add_units.partial_order
- with_zero.partial_order
- multiplicative.partial_order
- additive.partial_order
- multiset.partial_order
- finset.partial_order
- rat.partial_order
- associates.partial_order
- submonoid.partial_order
- add_submonoid.partial_order
- subgroup.partial_order
- add_subgroup.partial_order
- finsupp.partial_order
- submodule.partial_order
- setoid.partial_order
- con.partial_order
- add_con.partial_order
- subsemiring.partial_order
- subring.partial_order
- subalgebra.partial_order
- enat.partial_order
- filter.partial_order
- ordinal.partial_order
- pequiv.partial_order
- topological_space.partial_order
- topological_space.opens.partial_order
- topological_space.open_nhds.partial_order
- uniform_space.partial_order
- real.partial_order
- measurable_space.partial_order
- measurable_space.dynkin_system.partial_order
- measure_theory.measure.partial_order
- measure_theory.simple_func.partial_order
- filter.germ.partial_order
- measure_theory.ae_eq_fun.partial_order
- enorm.partial_order
- category_theory.thin_skeleton.thin_skeleton_partial_order
- preorder_hom.partial_order
- omega_complete_partial_order.partial_order
- semiquot.partial_order
- setoid.partition.partial_order
- subfield.partial_order
- intermediate_field.partial_order
- structure_groupoid.partial_order
- PartialOrder.partial_order
- lex_partial_order
- dlex_partial_order
- pilex.partial_order
- ring.fractional_ideal.partial_order
- surreal.partial_order
- open_subgroup.partial_order
- open_add_subgroup.partial_order
@[class]
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- le_trans : ∀ (a b c_1 : α), a ≤ b → b ≤ c_1 → a ≤ c_1
- lt_iff_le_not_le : (∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a) . "order_laws_tac"
- le_antisymm : ∀ (a b : α), a ≤ b → b ≤ a → a = b
- le_total : ∀ (a b : α), a ≤ b ∨ b ≤ a
A linear order is reflexive, transitive, antisymmetric and total relation ≤
.
Instances
- decidable_linear_order.to_linear_order
- linear_ordered_semiring.to_linear_order
- linear_ordered_ring.to_linear_order
- linear_nonneg_ring.to_linear_order
- linear_ordered_comm_group_with_zero.to_linear_order
- nat.linear_order
- order_dual.linear_order
- subtype.linear_order
- as_linear_order.linear_order
- Prop.linear_order
- with_bot.linear_order
- with_top.linear_order
- units.linear_order
- add_units.linear_order
- with_zero.linear_order
- multiplicative.linear_order
- additive.linear_order
- list.linear_order
- fin.linear_order
- rat.linear_order
- cardinal.linear_order
- real.linear_order
- ereal.linear_order
- LinearOrder.linear_order
- lex_linear_order
- dlex_linear_order
- nonote.linear_order
- surreal.linear_order
@[instance]
@[instance]
@[instance]
@[class]
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- le_trans : ∀ (a b c_1 : α), a ≤ b → b ≤ c_1 → a ≤ c_1
- lt_iff_le_not_le : (∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a) . "order_laws_tac"
- le_antisymm : ∀ (a b : α), a ≤ b → b ≤ a → a = b
- le_total : ∀ (a b : α), a ≤ b ∨ b ≤ a
- decidable_le : decidable_rel has_le.le
- decidable_eq : decidable_eq α
- decidable_lt : decidable_rel has_lt.lt
Instances
- canonically_linear_ordered_add_monoid.to_decidable_linear_order
- decidable_linear_ordered_cancel_add_comm_monoid.to_decidable_linear_order
- decidable_linear_ordered_add_comm_group.to_decidable_linear_order
- decidable_linear_ordered_semiring.to_decidable_linear_order
- complete_linear_order.to_decidable_linear_order
- conditionally_complete_linear_order.to_decidable_linear_order
- nonempty_fin_lin_ord.to_decidable_linear_order
- nat.decidable_linear_order
- int.decidable_linear_order
- bool.decidable_linear_order
- order_dual.decidable_linear_order
- subtype.decidable_linear_order
- with_bot.decidable_linear_order
- with_top.decidable_linear_order
- units.decidable_linear_order
- add_units.decidable_linear_order
- with_zero.decidable_linear_order
- multiplicative.decidable_linear_order
- additive.decidable_linear_order
- list.decidable_linear_order
- fin.decidable_linear_order
- pnat.decidable_linear_order
- rat.decidable_linear_order
- char.decidable_linear_order
- string.decidable_linear_order
- enat.decidable_linear_order
- cardinal.decidable_linear_order
- ordinal.decidable_linear_order
- real.decidable_linear_order
- nnreal.decidable_linear_order
- pos_num.decidable_linear_order
- znum.decidable_linear_order
- zsqrtd.decidable_linear_order
- lex_decidable_linear_order
- dlex_decidable_linear_order
- nonote.decidable_linear_order
@[instance]
@[instance]
Equations
@[instance]
Equations
@[instance]
Equations
@[instance]
@[instance]
@[instance]
theorem
decidable.lt_or_eq_of_le
{α : Type u}
[partial_order α]
[decidable_rel has_le.le]
{a b : α}
(hab : a ≤ b) :
theorem
decidable.eq_or_lt_of_le
{α : Type u}
[partial_order α]
[decidable_rel has_le.le]
{a b : α}
(hab : a ≤ b) :
theorem
decidable.le_iff_lt_or_eq
{α : Type u}
[partial_order α]
[decidable_rel has_le.le]
{a b : α} :
theorem
decidable.le_of_not_lt
{α : Type u}
[decidable_linear_order α]
{a b : α}
(h : ¬b < a) :
a ≤ b
def
decidable.lt_by_cases
{α : Type u}
[decidable_linear_order α]
(x y : α)
{P : Sort u_1}
(h₁ : x < y → P)
(h₂ : x = y → P)
(h₃ : y < x → P) :
P
Perform a case-split on the ordering of x
and y
in a decidable linear order.
theorem
decidable.le_imp_le_of_lt_imp_lt
{α : Type u}
{β : Type u_1}
[preorder α]
[decidable_linear_order β]
{a b : α}
{c d : β}
(H : d < c → b < a)
(h : a ≤ b) :
c ≤ d