def
topological_space.is_topological_basis
{α : Type u}
[t : topological_space α]
(s : set (set α)) :
Prop
A topological basis is one that satisfies the necessary conditions so that it suffices to take unions of the basis sets to get a topology (without taking finite intersections as well).
theorem
topological_space.is_topological_basis_of_subbasis
{α : Type u}
[t : topological_space α]
{s : set (set α)}
(hs : t = topological_space.generate_from s) :
theorem
topological_space.mem_nhds_of_is_topological_basis
{α : Type u}
[t : topological_space α]
{a : α}
{s : set α}
{b : set (set α)}
(hb : topological_space.is_topological_basis b) :
theorem
topological_space.is_open_of_is_topological_basis
{α : Type u}
[t : topological_space α]
{s : set α}
{b : set (set α)}
(hb : topological_space.is_topological_basis b)
(hs : s ∈ b) :
is_open s
theorem
topological_space.mem_basis_subset_of_mem_open
{α : Type u}
[t : topological_space α]
{b : set (set α)}
(hb : topological_space.is_topological_basis b)
{a : α}
{u : set α}
(au : a ∈ u)
(ou : is_open u) :
theorem
topological_space.sUnion_basis_of_is_open
{α : Type u}
[t : topological_space α]
{B : set (set α)}
(hB : topological_space.is_topological_basis B)
{u : set α}
(ou : is_open u) :
theorem
topological_space.Union_basis_of_is_open
{α : Type u}
[t : topological_space α]
{B : set (set α)}
(hB : topological_space.is_topological_basis B)
{u : set α}
(ou : is_open u) :
@[class]
A separable space is one with a countable dense subset.
theorem
topological_space.exists_dense_seq
(α : Type u)
[t : topological_space α]
[topological_space.separable_space α]
[nonempty α] :
def
topological_space.dense_seq
(α : Type u)
[t : topological_space α]
[topological_space.separable_space α]
[nonempty α]
(a : ℕ) :
α
A sequence dense in a non-empty separable topological space.
Equations
@[simp]
theorem
topological_space.dense_seq_dense
(α : Type u)
[t : topological_space α]
[topological_space.separable_space α]
[nonempty α] :
@[class]
- nhds_generated_countable : ∀ (a : α), (𝓝 a).is_countably_generated
A first-countable space is one in which every point has a countable neighborhood basis.
theorem
topological_space.first_countable_topology.tendsto_subseq
{α : Type u}
[t : topological_space α]
[topological_space.first_countable_topology α]
{u : ℕ → α}
{x : α}
(hx : map_cluster_pt x filter.at_top u) :
∃ (ψ : ℕ → ℕ), strict_mono ψ ∧ filter.tendsto (u ∘ ψ) filter.at_top (𝓝 x)
theorem
topological_space.is_countably_generated_nhds
{α : Type u}
[t : topological_space α]
[topological_space.first_countable_topology α]
(x : α) :
theorem
topological_space.is_countably_generated_nhds_within
{α : Type u}
[t : topological_space α]
[topological_space.first_countable_topology α]
(x : α)
(s : set α) :
@[class]
- is_open_generated_countable : ∃ (b : set (set α)), b.countable ∧ t = topological_space.generate_from b
A second-countable space is one with a countable basis.
Instances
- second_countable_of_proper
- topological_space.subtype.second_countable_topology
- topological_space.topological_space.second_countable_topology
- topological_space.second_countable_topology_fintype
- real.topological_space.second_countable_topology
- nnreal.topological_space.second_countable_topology
- ennreal.topological_space.second_countable_topology
- continuous_linear_map.topological_space.second_countable_topology
- emetric.nonempty_compacts.second_countable_topology
- Gromov_Hausdorff.second_countable
@[instance]
theorem
topological_space.second_countable_topology_induced
(α : Type u)
(β : Type u_1)
[t : topological_space β]
[topological_space.second_countable_topology β]
(f : α → β) :
@[instance]
def
topological_space.subtype.second_countable_topology
(α : Type u)
[t : topological_space α]
(s : set α)
[topological_space.second_countable_topology α] :
theorem
topological_space.is_open_generated_countable_inter
(α : Type u)
[t : topological_space α]
[topological_space.second_countable_topology α] :
@[instance]
def
topological_space.topological_space.second_countable_topology
(α : Type u)
[t : topological_space α]
{β : Type u_1}
[topological_space β]
[topological_space.second_countable_topology α]
[topological_space.second_countable_topology β] :
@[instance]
def
topological_space.second_countable_topology_fintype
{ι : Type u_1}
{π : ι → Type u_2}
[fintype ι]
[t : Π (a : ι), topological_space («π» a)]
[sc : ∀ (a : ι), topological_space.second_countable_topology («π» a)] :
topological_space.second_countable_topology (Π (a : ι), «π» a)
@[instance]
theorem
topological_space.is_open_Union_countable
{α : Type u}
[t : topological_space α]
[topological_space.second_countable_topology α]
{ι : Type u_1}
(s : ι → set α)
(H : ∀ (i : ι), is_open (s i)) :