mathlib documentation

algebra.order

Lemmas about inequalities

This file contains some lemmas about //</>, and cmp.

theorem le_rfl {α : Type u} [preorder α] {x : α} :
x x

A version of le_refl where the argument is implicit

theorem eq.ge {α : Type u} [preorder α] {x y : α} (h : x = y) :
y x

If x = y then y ≤ x. Note: this lemma uses y ≤ x instead of x ≥ y, because le is used almost exclusively in mathlib.

theorem eq.trans_le {α : Type u} [preorder α] {x y z : α} (h1 : x = y) (h2 : y z) :
x z

@[nolint]
theorem has_le.le.ge {α : Type u} [has_le α] {x y : α} (h : x y) :
y x

theorem has_le.le.trans_eq {α : Type u} [preorder α] {x y z : α} (h1 : x y) (h2 : y = z) :
x z

@[nolint]
theorem has_lt.lt.gt {α : Type u} [has_lt α] {x y : α} (h : x < y) :
y > x

theorem has_lt.lt.false {α : Type u} [preorder α] {x : α} (a : x < x) :

@[nolint]
theorem ge.le {α : Type u} [has_le α] {x y : α} (h : x y) :
y x

@[nolint]
theorem gt.lt {α : Type u} [has_lt α] {x y : α} (h : x > y) :
y < x

@[nolint]
theorem ge_of_eq {α : Type u} [preorder α] {a b : α} (h : a = b) :
a b

@[simp, nolint]
theorem ge_iff_le {α : Type u} [preorder α] {a b : α} :
a b b a

@[simp, nolint]
theorem gt_iff_lt {α : Type u} [preorder α] {a b : α} :
a > b b < a

theorem not_le_of_lt {α : Type u} [preorder α] {a b : α} (h : a < b) :
¬b a

theorem not_lt_of_le {α : Type u} [preorder α] {a b : α} (h : a b) :
¬b < a

theorem le_iff_eq_or_lt {α : Type u} [partial_order α] {a b : α} :
a b a = b a < b

theorem lt_iff_le_and_ne {α : Type u} [partial_order α] {a b : α} :
a < b a b a b

theorem eq_iff_le_not_lt {α : Type u} [partial_order α] {a b : α} :
a = b a b ¬a < b

theorem eq_or_lt_of_le {α : Type u} [partial_order α] {a b : α} (h : a b) :
a = b a < b

theorem lt_of_not_ge' {α : Type u} [linear_order α] {a b : α} (h : ¬b a) :
a < b

theorem lt_iff_not_ge' {α : Type u} [linear_order α] {x y : α} :
x < y ¬y x

theorem le_of_not_lt {α : Type u} [linear_order α] {a b : α} (a_1 : ¬a < b) :
b a

theorem lt_or_le {α : Type u} [linear_order α] (a b : α) :
a < b b a

theorem le_or_lt {α : Type u} [linear_order α] (a b : α) :
a b b < a

theorem has_le.le.lt_or_le {α : Type u} [linear_order α] {a b : α} (h : a b) (c : α) :
a < c c b

theorem has_le.le.le_or_lt {α : Type u} [linear_order α] {a b : α} (h : a b) (c : α) :
a c c < b

theorem not_lt_iff_eq_or_lt {α : Type u} [linear_order α] {a b : α} :
¬a < b a = b b < a

theorem exists_ge_of_linear {α : Type u} [linear_order α] (a b : α) :
∃ (c : α), a c b c

theorem lt_imp_lt_of_le_imp_le {α : Type u} {β : Type u_1} [linear_order α] [preorder β] {a b : α} {c d : β} (H : a bc d) (h : d < c) :
b < a

theorem le_imp_le_of_lt_imp_lt {α : Type u} {β : Type u_1} [preorder α] [linear_order β] {a b : α} {c d : β} (H : d < cb < a) (h : a b) :
c d

theorem le_imp_le_iff_lt_imp_lt {α : Type u} {β : Type u_1} [linear_order α] [linear_order β] {a b : α} {c d : β} :
a bc d d < cb < a

theorem lt_iff_lt_of_le_iff_le' {α : Type u} {β : Type u_1} [preorder α] [preorder β] {a b : α} {c d : β} (H : a b c d) (H' : b a d c) :
b < a d < c

theorem lt_iff_lt_of_le_iff_le {α : Type u} {β : Type u_1} [linear_order α] [linear_order β] {a b : α} {c d : β} (H : a b c d) :
b < a d < c

theorem le_iff_le_iff_lt_iff_lt {α : Type u} {β : Type u_1} [linear_order α] [linear_order β] {a b : α} {c d : β} :
a b c d (b < a d < c)

theorem eq_of_forall_le_iff {α : Type u} [partial_order α] {a b : α} (H : ∀ (c : α), c a c b) :
a = b

theorem le_of_forall_le {α : Type u} [preorder α] {a b : α} (H : ∀ (c : α), c ac b) :
a b

theorem le_of_forall_le' {α : Type u} [preorder α] {a b : α} (H : ∀ (c : α), a cb c) :
b a

theorem le_of_forall_lt {α : Type u} [linear_order α] {a b : α} (H : ∀ (c : α), c < ac < b) :
a b

theorem forall_lt_iff_le {α : Type u} [linear_order α] {a b : α} :
(∀ ⦃c : α⦄, c < ac < b) a b

theorem le_of_forall_lt' {α : Type u} [linear_order α] {a b : α} (H : ∀ (c : α), a < cb < c) :
b a

theorem forall_lt_iff_le' {α : Type u} [linear_order α] {a b : α} :
(∀ ⦃c : α⦄, a < cb < c) b a

theorem eq_of_forall_ge_iff {α : Type u} [partial_order α] {a b : α} (H : ∀ (c : α), a c b c) :
a = b

theorem le_implies_le_of_le_of_le {α : Type u} {a b c d : α} [preorder α] (h₀ : c a) (h₁ : b d) (a_1 : a b) :
c d

monotonicity of with respect to

theorem decidable.le_imp_le_iff_lt_imp_lt {α : Type u} {β : Type u_1} [linear_order α] [decidable_linear_order β] {a b : α} {c d : β} :
a bc d d < cb < a

theorem decidable.le_iff_le_iff_lt_iff_lt {α : Type u} {β : Type u_1} [decidable_linear_order α] [decidable_linear_order β] {a b : α} {c d : β} :
a b c d (b < a d < c)

@[simp]
def ordering.compares {α : Type u} [has_lt α] (a : ordering) (a_1 a_2 : α) :
Prop

compares o a b means that a and b have the ordering relation o between them, assuming that the relation a < b is defined

Equations
theorem ordering.compares.eq_lt {α : Type u} [preorder α] {o : ordering} {a b : α} (a_1 : o.compares a b) :

theorem ordering.compares.eq_eq {α : Type u} [preorder α] {o : ordering} {a b : α} (a_1 : o.compares a b) :

theorem ordering.compares.eq_gt {α : Type u} [preorder α] {o : ordering} {a b : α} (a_1 : o.compares a b) :

theorem ordering.compares.inj {α : Type u} [preorder α] {o₁ o₂ : ordering} {a b : α} (a_1 : o₁.compares a b) (a_2 : o₂.compares a b) :
o₁ = o₂

theorem ordering.compares_iff_of_compares_impl {α : Type u} {β : Type u_1} [linear_order α] [preorder β] {a b : α} {a' b' : β} (h : ∀ {o : ordering}, o.compares a bo.compares a' b') (o : ordering) :
o.compares a b o.compares a' b'

theorem ordering.swap_or_else (o₁ o₂ : ordering) :
(o₁.or_else o₂).swap = o₁.swap.or_else o₂.swap

theorem cmp_compares {α : Type u} [decidable_linear_order α] (a b : α) :
(cmp a b).compares a b

theorem cmp_swap {α : Type u} [preorder α] [decidable_rel has_lt.lt] (a b : α) :
(cmp a b).swap = cmp b a