Facts about (co)limits of functors into concrete categories
@[simp]
theorem
category_theory.limits.cone.w_apply
{J : Type v}
[category_theory.small_category J]
{C : Type u}
[category_theory.category C]
[category_theory.concrete_category C]
{F : J ⥤ C}
(s : category_theory.limits.cone F)
{j j' : J}
(f : j ⟶ j')
(x : ↥(s.X)) :
Naturality of a cone over functors to a concrete category.
@[simp]
theorem
category_theory.limits.cone.w_forget_apply
{J : Type v}
[category_theory.small_category J]
{C : Type u}
[category_theory.category C]
[category_theory.concrete_category C]
(F : J ⥤ C)
(s : category_theory.limits.cone (F ⋙ category_theory.forget C))
{j j' : J}
(f : j ⟶ j')
(x : s.X) :
@[simp]
theorem
category_theory.limits.cocone.w_apply
{J : Type v}
[category_theory.small_category J]
{C : Type u}
[category_theory.category C]
[category_theory.concrete_category C]
{F : J ⥤ C}
(s : category_theory.limits.cocone F)
{j j' : J}
(f : j ⟶ j')
(x : ↥(F.obj j)) :
Naturality of a cocone over functors into a concrete category.
@[simp]
theorem
category_theory.limits.cocone.w_forget_apply
{J : Type v}
[category_theory.small_category J]
{C : Type u}
[category_theory.category C]
[category_theory.concrete_category C]
(F : J ⥤ C)
(s : category_theory.limits.cocone (F ⋙ category_theory.forget C))
{j j' : J}
(f : j ⟶ j')
(x : ↥(F.obj j)) :
@[simp]
theorem
category_theory.limits.limit.lift_π_apply
{J : Type v}
[category_theory.small_category J]
{C : Type u}
[category_theory.category C]
[category_theory.concrete_category C]
(F : J ⥤ C)
[category_theory.limits.has_limit F]
(s : category_theory.limits.cone F)
(j : J)
(x : ↥(s.X)) :
⇑(category_theory.limits.limit.π F j) (⇑(category_theory.limits.limit.lift F s) x) = ⇑(s.π.app j) x
@[simp]
theorem
category_theory.limits.limit.w_apply
{J : Type v}
[category_theory.small_category J]
{C : Type u}
[category_theory.category C]
[category_theory.concrete_category C]
(F : J ⥤ C)
[category_theory.limits.has_limit F]
{j j' : J}
(f : j ⟶ j')
(x : ↥(category_theory.limits.limit F)) :
⇑(F.map f) (⇑(category_theory.limits.limit.π F j) x) = ⇑(category_theory.limits.limit.π F j') x
@[simp]
theorem
category_theory.limits.colimit.ι_desc_apply
{J : Type v}
[category_theory.small_category J]
{C : Type u}
[category_theory.category C]
[category_theory.concrete_category C]
(F : J ⥤ C)
[category_theory.limits.has_colimit F]
(s : category_theory.limits.cocone F)
(j : J)
(x : ↥(F.obj j)) :
⇑(category_theory.limits.colimit.desc F s) (⇑(category_theory.limits.colimit.ι F j) x) = ⇑(s.ι.app j) x
@[simp]
theorem
category_theory.limits.colimit.w_apply
{J : Type v}
[category_theory.small_category J]
{C : Type u}
[category_theory.category C]
[category_theory.concrete_category C]
(F : J ⥤ C)
[category_theory.limits.has_colimit F]
{j j' : J}
(f : j ⟶ j')
(x : ↥(F.obj j)) :
⇑(category_theory.limits.colimit.ι F j') (⇑(F.map f) x) = ⇑(category_theory.limits.colimit.ι F j) x