mathlib documentation

category_theory.limits.concrete_category

Facts about (co)limits of functors into concrete categories

@[simp]
theorem category_theory.limits.cone.w_apply {J : Type v} [category_theory.small_category J] {C : Type u} [category_theory.category C] [category_theory.concrete_category C] {F : J C} (s : category_theory.limits.cone F) {j j' : J} (f : j j') (x : (s.X)) :
(F.map f) ((s.π.app j) x) = (s.π.app j') x

Naturality of a cone over functors to a concrete category.

@[simp]
theorem category_theory.limits.cone.w_forget_apply {J : Type v} [category_theory.small_category J] {C : Type u} [category_theory.category C] [category_theory.concrete_category C] (F : J C) (s : category_theory.limits.cone (F category_theory.forget C)) {j j' : J} (f : j j') (x : s.X) :
(F.map f) (s.π.app j x) = s.π.app j' x

@[simp]
theorem category_theory.limits.cocone.w_apply {J : Type v} [category_theory.small_category J] {C : Type u} [category_theory.category C] [category_theory.concrete_category C] {F : J C} (s : category_theory.limits.cocone F) {j j' : J} (f : j j') (x : (F.obj j)) :
(s.ι.app j') ((F.map f) x) = (s.ι.app j) x

Naturality of a cocone over functors into a concrete category.

@[simp]
theorem category_theory.limits.cocone.w_forget_apply {J : Type v} [category_theory.small_category J] {C : Type u} [category_theory.category C] [category_theory.concrete_category C] (F : J C) (s : category_theory.limits.cocone (F category_theory.forget C)) {j j' : J} (f : j j') (x : (F.obj j)) :
s.ι.app j' ((F.map f) x) = s.ι.app j x