mathlib documentation

category_theory.monoidal.category

@[class]
structure category_theory.monoidal_category (C : Type u) [š’ž : category_theory.category C] :
Type (max u v)

In a monoidal category, we can take the tensor product of objects, X āŠ— Y and of morphisms f āŠ— g. Tensor product does not need to be strictly associative on objects, but there is a specified associator, α_ X Y Z : (X āŠ— Y) āŠ— Z ≅ X āŠ— (Y āŠ— Z). There is a tensor unit šŸ™_ C, with specified left and right unitor isomorphisms Ī»_ X : šŸ™_ C āŠ— X ≅ X and ρ_ X : X āŠ— šŸ™_ C ≅ X. These associators and unitors satisfy the pentagon and triangle equations.

See https://stacks.math.columbia.edu/tag/0FFK.

Instances
@[simp]
theorem category_theory.tensor_iso_hom {C : Type u} {X Y X' Y' : C} [category_theory.category C] [category_theory.monoidal_category C] (f : X ≅ Y) (g : X' ≅ Y') :
(f āŠ— g).hom = (f.hom āŠ— g.hom)

@[simp]
theorem category_theory.tensor_iso_inv {C : Type u} {X Y X' Y' : C} [category_theory.category C] [category_theory.monoidal_category C] (f : X ≅ Y) (g : X' ≅ Y') :
(f āŠ— g).inv = (f.inv āŠ— g.inv)

def category_theory.tensor_iso {C : Type u} {X Y X' Y' : C} [category_theory.category C] [category_theory.monoidal_category C] (f : X ≅ Y) (g : X' ≅ Y') :
X āŠ— X' ≅ Y āŠ— Y'

The tensor product of two isomorphisms is an isomorphism.

Equations
@[simp]

@[simp]

theorem category_theory.monoidal_category.associator_inv_naturality {C : Type u} [category_theory.category C] [category_theory.monoidal_category C] {X Y Z X' Y' Z' : C} (f : X ⟶ X') (g : Y ⟶ Y') (h : Z ⟶ Z') :
(f āŠ— (g āŠ— h)) ≫ (α_ X' Y' Z').inv = (α_ X Y Z).inv ≫ (f āŠ— g āŠ— h)

The tensor product expressed as a functor.

Equations

The left-associated triple tensor product as a functor.

Equations

The right-associated triple tensor product as a functor.

Equations

The functor Ī» X, šŸ™_ C āŠ— X.

Equations

The functor Ī» X, X āŠ— šŸ™_ C.

Equations

Tensoring on the left with as fixed object, as a functor.

Equations

Tensoring on the right with as fixed object, as a functor.

Equations

Tensoring on the right, as a functor from C into endofunctors of C.

We later show this is a monoidal functor.

Equations