mathlib documentation

ring_theory.eisenstein_criterion

Eisenstein's criterion

A proof of a slight generalisation of Eisenstein's criterion for the irreducibility of a polynomial over an integral domain.

theorem polynomial.irreducible_of_eisenstein_criterion {R : Type u_1} [integral_domain R] {f : polynomial R} {P : ideal R} (hP : P.is_prime) (hfl : f.leading_coeff P) (hfP : ∀ (n : ), n < f.degreef.coeff n P) (hfd0 : 0 < f.degree) (h0 : f.coeff 0 P ^ 2) (hu : ∀ (x : R), polynomial.C x fis_unit x) :

If f is a non constant polynomial with coefficients in R, and P is a prime ideal in R, then if every coefficient in R except the leading coefficient is in P, and the trailing coefficient is not in P^2 and no non units in R divide f, then f is irreducible.