Presheaves on a topological space
We define presheaf C X
simply as (opens X)ᵒᵖ ⥤ C
,
and inherit the category structure with natural transformations as morphisms.
We define
pushforward_obj {X Y : Top.{v}} (f : X ⟶ Y) (ℱ : X.presheaf C) : Y.presheaf C
with notationf _* ℱ
and forℱ : X.presheaf C
provide the natural isomorphisms- `pushforward.id : (𝟙 X) _* ℱ ≅ ℱ``
pushforward.comp : (f ≫ g) _* ℱ ≅ g _* (f _* ℱ)
along with their@[simp]
lemmas.
@[instance]
Equations
- Top.presheaf C X = ((topological_space.opens ↥X)ᵒᵖ ⥤ C)
def
Top.presheaf.pushforward_obj
{C : Type u}
[category_theory.category C]
{X Y : Top}
(f : X ⟶ Y)
(ℱ : Top.presheaf C X) :
Top.presheaf C Y
Pushforward a presheaf on X
along a continuous map f : X ⟶ Y
, obtaining a presheaf on Y
.
Equations
- f _* ℱ = (topological_space.opens.map f).op ⋙ ℱ
@[simp]
theorem
Top.presheaf.pushforward_obj_obj
{C : Type u}
[category_theory.category C]
{X Y : Top}
(f : X ⟶ Y)
(ℱ : Top.presheaf C X)
(U : (topological_space.opens ↥Y)ᵒᵖ) :
@[simp]
theorem
Top.presheaf.pushforward_obj_map
{C : Type u}
[category_theory.category C]
{X Y : Top}
(f : X ⟶ Y)
(ℱ : Top.presheaf C X)
{U V : (topological_space.opens ↥Y)ᵒᵖ}
(i : U ⟶ V) :
def
Top.presheaf.pushforward_eq
{C : Type u}
[category_theory.category C]
{X Y : Top}
{f g : X ⟶ Y}
(h : f = g)
(ℱ : Top.presheaf C X) :
Equations
@[simp]
theorem
Top.presheaf.pushforward_eq_hom_app
{C : Type u}
[category_theory.category C]
{X Y : Top}
{f g : X ⟶ Y}
(h : f = g)
(ℱ : Top.presheaf C X)
(U : (topological_space.opens ↥Y)ᵒᵖ) :
(Top.presheaf.pushforward_eq h ℱ).hom.app U = ℱ.map (id (category_theory.eq_to_hom _).op)
@[simp]
theorem
Top.presheaf.pushforward_eq_rfl
{C : Type u}
[category_theory.category C]
{X Y : Top}
(f : X ⟶ Y)
(ℱ : Top.presheaf C X)
(U : topological_space.opens ↥Y) :
(Top.presheaf.pushforward_eq rfl ℱ).hom.app (opposite.op U) = 𝟙 ((f _* ℱ).obj (opposite.op U))
theorem
Top.presheaf.pushforward_eq_eq
{C : Type u}
[category_theory.category C]
{X Y : Top}
{f g : X ⟶ Y}
(h₁ h₂ : f = g)
(ℱ : Top.presheaf C X) :
def
Top.presheaf.pushforward.id
{C : Type u}
[category_theory.category C]
{X : Top}
(ℱ : Top.presheaf C X) :
@[simp]
theorem
Top.presheaf.pushforward.id_hom_app'
{C : Type u}
[category_theory.category C]
{X : Top}
(ℱ : Top.presheaf C X)
(U : set ↥X)
(p : is_open U) :
(Top.presheaf.pushforward.id ℱ).hom.app (opposite.op ⟨U, p⟩) = ℱ.map (𝟙 (opposite.op ⟨U, p⟩))
@[simp]
theorem
Top.presheaf.pushforward.id_hom_app
{C : Type u}
[category_theory.category C]
{X : Top}
(ℱ : Top.presheaf C X)
(U : (topological_space.opens ↥X)ᵒᵖ) :
(Top.presheaf.pushforward.id ℱ).hom.app U = ℱ.map (category_theory.eq_to_hom _)
@[simp]
theorem
Top.presheaf.pushforward.id_inv_app'
{C : Type u}
[category_theory.category C]
{X : Top}
(ℱ : Top.presheaf C X)
(U : set ↥X)
(p : is_open U) :
(Top.presheaf.pushforward.id ℱ).inv.app (opposite.op ⟨U, p⟩) = ℱ.map (𝟙 (opposite.op ⟨U, p⟩))
def
Top.presheaf.pushforward.comp
{C : Type u}
[category_theory.category C]
{X : Top}
(ℱ : Top.presheaf C X)
{Y Z : Top}
(f : X ⟶ Y)
(g : Y ⟶ Z) :
@[simp]
theorem
Top.presheaf.pushforward.comp_hom_app
{C : Type u}
[category_theory.category C]
{X : Top}
(ℱ : Top.presheaf C X)
{Y Z : Top}
(f : X ⟶ Y)
(g : Y ⟶ Z)
(U : (topological_space.opens ↥Z)ᵒᵖ) :
@[simp]
theorem
Top.presheaf.pushforward.comp_inv_app
{C : Type u}
[category_theory.category C]
{X : Top}
(ℱ : Top.presheaf C X)
{Y Z : Top}
(f : X ⟶ Y)
(g : Y ⟶ Z)
(U : (topological_space.opens ↥Z)ᵒᵖ) :
def
Top.presheaf.pushforward_map
{C : Type u}
[category_theory.category C]
{X Y : Top}
(f : X ⟶ Y)
{ℱ 𝒢 : Top.presheaf C X}
(α : ℱ ⟶ 𝒢) :
A morphism of presheaves gives rise to a morphisms of the pushforwards of those presheaves.
Equations
- Top.presheaf.pushforward_map f α = {app := λ (U : (topological_space.opens ↥Y)ᵒᵖ), α.app ((topological_space.opens.map f).op.obj U), naturality' := _}
@[simp]
theorem
Top.presheaf.pushforward_map_app
{C : Type u}
[category_theory.category C]
{X Y : Top}
(f : X ⟶ Y)
{ℱ 𝒢 : Top.presheaf C X}
(α : ℱ ⟶ 𝒢)
(U : (topological_space.opens ↥Y)ᵒᵖ) :
(Top.presheaf.pushforward_map f α).app U = α.app ((topological_space.opens.map f).op.obj U)