The two morphisms Ξ»_ (π_ C)
and Ο_ (π_ C)
from π_ C β π_ C
to π_ C
are equal.
This is suprisingly difficult to prove directly from the usual axioms for a monoidal category!
This proof follows the diagram given at https://people.math.osu.edu/penneys.2/QS2019/VicaryHandout.pdf
It should be a consequence of the coherence theorem for monoidal categories (although quite possibly it is a necessary building block of any proof).
theorem
category_theory.monoidal_category.unitors_equal.cells_1_7
{C : Type u}
[category_theory.category C]
[category_theory.monoidal_category C] :
theorem
category_theory.monoidal_category.unitors_equal.cells_8
{C : Type u}
[category_theory.category C]
[category_theory.monoidal_category C] :
theorem
category_theory.monoidal_category.unitors_equal.cells_14
{C : Type u}
[category_theory.category C]
[category_theory.monoidal_category C] :
theorem
category_theory.monoidal_category.unitors_equal.cells_9
{C : Type u}
[category_theory.category C]
[category_theory.monoidal_category C] :
theorem
category_theory.monoidal_category.unitors_equal.cells_10_13
{C : Type u}
[category_theory.category C]
[category_theory.monoidal_category C] :
((Ο_ (π_ C β π_ C)).inv β π (π_ C)) β« (Ξ±_ (π_ C β π_ C) (π_ C) (π_ C)).hom β« (Ξ±_ (π_ C) (π_ C) (π_ C β π_ C)).hom β« (π (π_ C) β (Ξ±_ (π_ C) (π_ C) (π_ C)).inv) β« (Ξ±_ (π_ C) (π_ C β π_ C) (π_ C)).inv = (π (π_ C) β (Ο_ (π_ C)).inv β π (π_ C))
theorem
category_theory.monoidal_category.unitors_equal.cells_9_13
{C : Type u}
[category_theory.category C]
[category_theory.monoidal_category C] :
theorem
category_theory.monoidal_category.unitors_equal.cells_15
{C : Type u}
[category_theory.category C]
[category_theory.monoidal_category C] :
theorem
category_theory.monoidal_category.unitors_equal
{C : Type u}
[category_theory.category C]
[category_theory.monoidal_category C] :