mathlib documentation

control.functor

theorem functor.map_id {F : Type uType v} {α : Type u} [functor F] [is_lawful_functor F] :

theorem functor.map_comp_map {F : Type uType v} {α β γ : Type u} [functor F] [is_lawful_functor F] (f : α → β) (g : β → γ) :

theorem functor.ext {F : Type u_1Type u_2} {F1 F2 : functor F} [is_lawful_functor F] [is_lawful_functor F] (H : ∀ (α β : Type u_1) (f : α → β) (x : F α), f <$> x = f <$> x) :
F1 = F2

def id.mk {α : Sort u} (a : α) :
id α

Equations
@[nolint]
def functor.const (α : Type u_1) (β : Type u_2) :
Type u_1

const α is the constant functor, mapping every type to α

Equations
def functor.const.mk {α : Type u_1} {β : Type u_2} (x : α) :

Equations
def functor.const.mk' {α : Type u_1} (x : α) :

Equations
def functor.const.run {α : Type u_1} {β : Type u_2} (x : functor.const α β) :
α

Equations
theorem functor.const.ext {α : Type u_1} {β : Type u_2} {x y : functor.const α β} (h : x.run = y.run) :
x = y

@[nolint]
def functor.const.map {γ : Type u_1} {α : Type u_2} {β : Type u_3} (f : α → β) (x : functor.const γ β) :

The map operation of the const γ functor.

Equations
@[instance]
def functor.const.functor {γ : Type u_1} :

Equations
@[instance]

def functor.add_const (α : Type u_1) (β : Type u_2) :
Type u_1

Equations
def functor.add_const.mk {α : Type u_1} {β : Type u_2} (x : α) :

Equations
def functor.add_const.run {α : Type u_1} {β : Type u_2} (a : functor.add_const α β) :
α

Equations
def functor.comp (F : Type uType w) (G : Type vType u) (α : Type v) :
Type w

functor.comp is a wrapper around function.comp for types. It prevents Lean's type class resolution mechanism from trying a functor (comp F id) when functor F would do.

Equations
def functor.comp.mk {F : Type uType w} {G : Type vType u} {α : Type v} (x : F (G α)) :

Equations
def functor.comp.run {F : Type uType w} {G : Type vType u} {α : Type v} (x : functor.comp F G α) :
F (G α)

Equations
theorem functor.comp.ext {F : Type uType w} {G : Type vType u} {α : Type v} {x y : functor.comp F G α} (a : x.run = y.run) :
x = y

def functor.comp.map {F : Type uType w} {G : Type vType u} [functor F] [functor G] {α β : Type v} (h : α → β) (a : functor.comp F G α) :

Equations
@[instance]
def functor.comp.functor {F : Type uType w} {G : Type vType u} [functor F] [functor G] :

Equations
theorem functor.comp.map_mk {F : Type uType w} {G : Type vType u} [functor F] [functor G] {α β : Type v} (h : α → β) (x : F (G α)) :

@[simp]
theorem functor.comp.run_map {F : Type uType w} {G : Type vType u} [functor F] [functor G] {α β : Type v} (h : α → β) (x : functor.comp F G α) :

theorem functor.comp.id_map {F : Type uType w} {G : Type vType u} [functor F] [functor G] [is_lawful_functor F] [is_lawful_functor G] {α : Type v} (x : functor.comp F G α) :

theorem functor.comp.comp_map {F : Type uType w} {G : Type vType u} [functor F] [functor G] [is_lawful_functor F] [is_lawful_functor G] {α β γ : Type v} (g' : α → β) (h : β → γ) (x : functor.comp F G α) :

@[instance]
def functor.comp.is_lawful_functor {F : Type uType w} {G : Type vType u} [functor F] [functor G] [is_lawful_functor F] [is_lawful_functor G] :

theorem functor.comp.functor_comp_id {F : Type u_1Type u_2} [AF : functor F] [is_lawful_functor F] :

theorem functor.comp.functor_id_comp {F : Type u_1Type u_2} [AF : functor F] [is_lawful_functor F] :

def functor.comp.seq {F : Type uType w} {G : Type vType u} [applicative F] [applicative G] {α β : Type v} (a : functor.comp F G (α → β)) (a_1 : functor.comp F G α) :

Equations
@[instance]
def functor.comp.has_pure {F : Type uType w} {G : Type vType u} [applicative F] [applicative G] :

Equations
@[instance]
def functor.comp.has_seq {F : Type uType w} {G : Type vType u} [applicative F] [applicative G] :

Equations
@[simp]
theorem functor.comp.run_pure {F : Type uType w} {G : Type vType u} [applicative F] [applicative G] {α : Type v} (x : α) :
(pure x).run = pure (pure x)

@[simp]
theorem functor.comp.run_seq {F : Type uType w} {G : Type vType u} [applicative F] [applicative G] {α β : Type v} (f : functor.comp F G (α → β)) (x : functor.comp F G α) :

@[instance]
def functor.comp.applicative {F : Type uType w} {G : Type vType u} [applicative F] [applicative G] :

Equations
def functor.liftp {F : Type uType u} [functor F] {α : Type u} (p : α → Prop) (x : F α) :
Prop

If we consider x : F α to, in some sense, contain values of type α, predicate liftp p x holds iff, every value contained by x satisfies p

Equations
def functor.liftr {F : Type uType u} [functor F] {α : Type u} (r : α → α → Prop) (x y : F α) :
Prop

liftr r x y relates x and y iff x and y have the same shape and that we can pair values a from x and b from y so that r a b holds

Equations
def functor.supp {F : Type uType u} [functor F] {α : Type u} (x : F α) :
set α

supp x is the set of values of type α that x contains

Equations
theorem functor.of_mem_supp {F : Type uType u} [functor F] {α : Type u} {x : F α} {p : α → Prop} (h : functor.liftp p x) (y : α) (H : y functor.supp x) :
p y

@[instance]

Equations