Presheafed spaces
Introduces the category of topological spaces equipped with a presheaf (taking values in an
arbitrary target category C
.)
We further describe how to apply functors and natural transformations to the values of the presheaves.
- carrier : Top
- presheaf : Top.presheaf C c.carrier
A PresheafedSpace C
is a topological space equipped with a presheaf of C
s.
Equations
Equations
- X.topological_space = X.carrier.str
The constant presheaf on X
with value Z
.
A morphism between presheafed spaces X
and Y
consists of a continuous map
f
between the underlying topological spaces, and a (notice contravariant!) map
from the presheaf on Y
to the pushforward of the presheaf on X
via f
.
The identity morphism of a PresheafedSpace
.
Equations
Equations
- X.hom_inhabited = {default := X.id}
Composition of morphisms of PresheafedSpace
s.
The category of PresheafedSpaces. Morphisms are pairs, a continuous map and a presheaf map from the presheaf on the target to the pushforward of the presheaf on the source.
Equations
- algebraic_geometry.PresheafedSpace.category_of_PresheafedSpaces C = {to_category_struct := {to_has_hom := {hom := algebraic_geometry.PresheafedSpace.hom _inst_1}, id := algebraic_geometry.PresheafedSpace.id _inst_1, comp := λ (X Y Z : algebraic_geometry.PresheafedSpace C) (f : X ⟶ Y) (g : Y ⟶ Z), algebraic_geometry.PresheafedSpace.comp f g}, id_comp' := _, comp_id' := _, assoc' := _}
The forgetful functor from PresheafedSpace
to Top
.
Equations
- algebraic_geometry.PresheafedSpace.forget C = {obj := λ (X : algebraic_geometry.PresheafedSpace C), ↑X, map := λ (X Y : algebraic_geometry.PresheafedSpace C) (f : X ⟶ Y), f.base, map_id' := _, map_comp' := _}
The restriction of a presheafed space along an open embedding into the space.
The map from the restriction of a presheafed space.
Equations
- algebraic_geometry.PresheafedSpace.of_restrict U X f h = {base := f, c := {app := λ (V : (topological_space.opens ↥(X.carrier))ᵒᵖ), X.presheaf.map (⇑((_.adjunction.hom_equiv ((topological_space.opens.map f).obj (opposite.unop V)) (opposite.unop V)).symm) (𝟙 ((topological_space.opens.map f).obj (opposite.unop V)))).op, naturality' := _}}
The map to the restriction of a presheafed space along the canonical inclusion from the top subspace.
The isomorphism from the restriction to the top subspace.
Equations
- X.restrict_top_iso = {hom := algebraic_geometry.PresheafedSpace.of_restrict ((topological_space.opens.to_Top ↑X).obj ⊤) X ⊤.inclusion _, inv := X.to_restrict_top, hom_inv_id' := _, inv_hom_id' := _}
The global sections, notated Gamma.
Equations
- algebraic_geometry.PresheafedSpace.Γ = {obj := λ (X : (algebraic_geometry.PresheafedSpace C)ᵒᵖ), (opposite.unop X).presheaf.obj (opposite.op ⊤), map := λ (X Y : (algebraic_geometry.PresheafedSpace C)ᵒᵖ) (f : X ⟶ Y), f.unop.c.app (opposite.op ⊤) ≫ (opposite.unop Y).presheaf.map (topological_space.opens.le_map_top f.unop.base ⊤).op, map_id' := _, map_comp' := _}
We can apply a functor F : C ⥤ D
to the values of the presheaf in any PresheafedSpace C
,
giving a functor PresheafedSpace C ⥤ PresheafedSpace D
A natural transformation induces a natural transformation between the map_presheaf
functors.
Equations
- category_theory.nat_trans.on_presheaf α = {app := λ (X : algebraic_geometry.PresheafedSpace C), {base := 𝟙 ↑(G.map_presheaf.obj X), c := category_theory.whisker_left X.presheaf α ≫ (X.presheaf ⋙ G).left_unitor.inv ≫ category_theory.whisker_right (category_theory.nat_trans.op (topological_space.opens.map_id X.carrier).hom) (X.presheaf ⋙ G)}, naturality' := _}