Mon_ (Module R) ≌ Algebra R
The category of internal monoid objects in Module R
is equivalent to the category of "native" bundled R
-algebras.
Moreover, this equivalence is compatible with the forgetful functors to Module R
.
@[simp]
theorem
Module.Mon_Module_equivalence_Algebra.ring_zero
{R : Type u}
[comm_ring R]
(A : Mon_ (Module R)) :
@[instance]
Equations
- Module.Mon_Module_equivalence_Algebra.ring A = {add := add_comm_group.add A.X.is_add_comm_group, add_assoc := _, zero := add_comm_group.zero A.X.is_add_comm_group, zero_add := _, add_zero := _, neg := add_comm_group.neg A.X.is_add_comm_group, add_left_neg := _, add_comm := _, mul := λ (x y : ↥(A.X)), ⇑(A.mul) (x ⊗ₜ[R] y), mul_assoc := _, one := ⇑(A.one) 1, one_mul := _, mul_one := _, left_distrib := _, right_distrib := _}
@[simp]
theorem
Module.Mon_Module_equivalence_Algebra.ring_neg
{R : Type u}
[comm_ring R]
(A : Mon_ (Module R))
(a : ↥(A.X)) :
-a = add_comm_group.neg a
@[simp]
theorem
Module.Mon_Module_equivalence_Algebra.ring_add
{R : Type u}
[comm_ring R]
(A : Mon_ (Module R))
(a a_1 : ↥(A.X)) :
a + a_1 = add_comm_group.add a a_1
@[instance]
def
Module.Mon_Module_equivalence_Algebra.algebra
{R : Type u}
[comm_ring R]
(A : Mon_ (Module R)) :
Equations
- Module.Mon_Module_equivalence_Algebra.algebra A = {to_has_scalar := mul_action.to_has_scalar distrib_mul_action.to_mul_action, to_ring_hom := {to_fun := A.one.to_fun, map_one' := _, map_mul' := _, map_zero' := _, map_add' := _}, commutes' := _, smul_def' := _}
Converting a monoid object in Module R
to a bundled algebra.
@[simp]
theorem
Module.Mon_Module_equivalence_Algebra.functor_obj
{R : Type u}
[comm_ring R]
(A : Mon_ (Module R)) :
Converting a bundled algebra to a monoid object in Module R
.
Equations
- Module.Mon_Module_equivalence_Algebra.inverse_obj A = {X := Module.of R ↥A algebra.to_semimodule, one := algebra.linear_map R ↥A A.is_algebra, mul := algebra.lmul' R ↥A A.is_algebra, one_mul' := _, mul_one' := _, mul_assoc' := _}
@[simp]
theorem
Module.Mon_Module_equivalence_Algebra.inverse_obj_mul
{R : Type u}
[comm_ring R]
(A : Algebra R) :
@[simp]
theorem
Module.Mon_Module_equivalence_Algebra.inverse_obj_one
{R : Type u}
[comm_ring R]
(A : Algebra R) :
@[simp]
theorem
Module.Mon_Module_equivalence_Algebra.inverse_obj_X
{R : Type u}
[comm_ring R]
(A : Algebra R) :
@[simp]
theorem
Module.Mon_Module_equivalence_Algebra.inverse_map_hom
{R : Type u}
[comm_ring R]
(A B : Algebra R)
(f : A ⟶ B) :
Converting a bundled algebra to a monoid object in Module R
.
Equations
- Module.Mon_Module_equivalence_Algebra.inverse = {obj := Module.Mon_Module_equivalence_Algebra.inverse_obj _inst_1, map := λ (A B : Algebra R) (f : A ⟶ B), {hom := alg_hom.to_linear_map f, one_hom' := _, mul_hom' := _}, map_id' := _, map_comp' := _}
@[simp]
theorem
Module.Mon_Module_equivalence_Algebra.inverse_obj_2
{R : Type u}
[comm_ring R]
(A : Algebra R) :
The category of internal monoid objects in Module R
is equivalent to the category of "native" bundled R
-algebras.
Equations
- Module.Mon_Module_equivalence_Algebra = {functor := Module.Mon_Module_equivalence_Algebra.functor _inst_1, inverse := Module.Mon_Module_equivalence_Algebra.inverse _inst_1, unit_iso := category_theory.nat_iso.of_components (λ (A : Mon_ (Module R)), {hom := {hom := {to_fun := id ↥(((𝟭 (Mon_ (Module R))).obj A).X), map_add' := _, map_smul' := _}, one_hom' := _, mul_hom' := _}, inv := {hom := {to_fun := id ↥(((Module.Mon_Module_equivalence_Algebra.functor ⋙ Module.Mon_Module_equivalence_Algebra.inverse).obj A).X), map_add' := _, map_smul' := _}, one_hom' := _, mul_hom' := _}, hom_inv_id' := _, inv_hom_id' := _}) Module.Mon_Module_equivalence_Algebra._proof_11, counit_iso := category_theory.nat_iso.of_components (λ (A : Algebra R), {hom := {to_fun := id ↥((Module.Mon_Module_equivalence_Algebra.inverse ⋙ Module.Mon_Module_equivalence_Algebra.functor).obj A), map_one' := _, map_mul' := _, map_zero' := _, map_add' := _, commutes' := _}, inv := {to_fun := id ↥((𝟭 (Algebra R)).obj A), map_one' := _, map_mul' := _, map_zero' := _, map_add' := _, commutes' := _}, hom_inv_id' := _, inv_hom_id' := _}) Module.Mon_Module_equivalence_Algebra._proof_24, functor_unit_iso_comp' := _}
The equivalence Mon_ (Module R) ≌ Algebra R
is naturally compatible with the forgetful functors to Module R
.
Equations
- Module.Mon_Module_equivalence_Algebra_forget = category_theory.nat_iso.of_components (λ (A : Mon_ (Module R)), {hom := {to_fun := id ↥((Module.Mon_Module_equivalence_Algebra.functor ⋙ category_theory.forget₂ (Algebra R) (Module R)).obj A), map_add' := _, map_smul' := _}, inv := {to_fun := id ↥((Mon_.forget (Module R)).obj A), map_add' := _, map_smul' := _}, hom_inv_id' := _, inv_hom_id' := _}) Module.Mon_Module_equivalence_Algebra_forget._proof_7