mathlib documentation

data.num.bitwise

def pos_num.lor (a a_1 : pos_num) :

Equations
def pos_num.land (a a_1 : pos_num) :

Equations
def pos_num.ldiff (a a_1 : pos_num) :

Equations
def pos_num.lxor (a a_1 : pos_num) :

Equations
def pos_num.test_bit (a : pos_num) (a_1 : ) :

Equations
def pos_num.one_bits (a : pos_num) (a_1 : ) :

Equations
def pos_num.shiftl (p : pos_num) (a : ) :

Equations
def pos_num.shiftr (a : pos_num) (a_1 : ) :

Equations
def num.lor (a a_1 : num) :

Equations
def num.land (a a_1 : num) :

Equations
def num.ldiff (a a_1 : num) :

Equations
def num.lxor (a a_1 : num) :

Equations
def num.shiftl (a : num) (a_1 : ) :

Equations
def num.shiftr (a : num) (a_1 : ) :

Equations
def num.test_bit (a : num) (a_1 : ) :

Equations
def num.one_bits (a : num) :

Equations
@[instance]

inductive nzsnum  :
Type

See snum.

@[instance]

inductive snum  :
Type

Alternative representation of integers using a sign bit at the end. The convention on sign here is to have the argument to msb denote the sign of the MSB itself, with all higher bits set to the negation of this sign. The result is interpreted in two's complement.

13  = ..0001101(base 2) = nz (bit1 (bit0 (bit1 (msb tt))))
-13 = ..1110011(base 2) = nz (bit1 (bit1 (bit0 (msb ff))))

As with num, a special case must be added for zero, which has no msb, but by two's complement symmetry there is a second special case for -1. Here the bool field indicates the sign of the number.

0  = ..0000000(base 2) = zero ff
-1 = ..1111111(base 2) = zero tt
@[instance]

Equations
@[instance]

Equations
@[instance]

Equations
@[instance]

Equations
@[instance]

Equations
@[instance]

Equations
def nzsnum.sign (a : nzsnum) :

Equations
def nzsnum.not (a : nzsnum) :

Equations
def nzsnum.head (a : nzsnum) :

Equations
def nzsnum.tail (a : nzsnum) :

Equations
def snum.sign (a : snum) :

Equations
def snum.not (a : snum) :

Equations
def snum.bit (a : bool) (a_1 : snum) :

Equations
def snum.bit0 (a : snum) :

Equations
def snum.bit1 (a : snum) :

Equations
theorem snum.bit_zero (b : bool) :

theorem snum.bit_one (b : bool) :

def nzsnum.drec' {C : snumSort u_1} (z : Π (b : bool), C (snum.zero b)) (s : Π (b : bool) (p : snum), C pC (b :: p)) (p : nzsnum) :
C p

Equations
def snum.head (a : snum) :

Equations
def snum.tail (a : snum) :

Equations
def snum.drec' {C : snumSort u_1} (z : Π (b : bool), C (snum.zero b)) (s : Π (b : bool) (p : snum), C pC (b :: p)) (p : snum) :
C p

Equations
def snum.rec' {α : Sort u_1} (z : bool → α) (s : boolsnumα → α) (a : snum) :
α

Equations
def snum.test_bit (a : ) (a_1 : snum) :

Equations
def snum.succ (a : snum) :

Equations
def snum.pred (a : snum) :

Equations
def snum.neg (n : snum) :

Equations
@[instance]

Equations
def snum.czadd (a a_1 : bool) (a_2 : snum) :

Equations
def snum.bits (a : snum) (n : ) :

Equations
def snum.cadd (a a_1 : snum) (a_2 : bool) :

Equations
def snum.add (a b : snum) :

Equations
@[instance]

Equations
def snum.sub (a b : snum) :

Equations
@[instance]

Equations
def snum.mul (a a_1 : snum) :

Equations
@[instance]

Equations