@[ext, class]
Instances
- subsingleton.unique_topological_space
- punit.unique
- fin.unique
- set.unique_singleton
- fin.tuple0_unique
- associates.unique_units
- Group.unique
- AddGroup.unique
- CommGroup.unique
- AddCommGroup.unique
- category_theory.limits.unique_to_terminal
- category_theory.limits.unique_from_initial
- nat.unique_units
- Mon_.unique_hom_from_trivial
- CommMon_.unique_hom_from_trivial
@[instance]
Equations
- punit.unique = {to_inhabited := {default := punit.star}, uniq := punit.unique._proof_1}
@[instance]
Equations
- fin.unique = {to_inhabited := {default := 0}, uniq := fin.unique._proof_1}
@[instance]
Equations
- unique.inhabited = _inst_1.to_inhabited
def
function.surjective.unique
{α : Sort u}
{β : Sort v}
{f : α → β}
(hf : function.surjective f)
[unique α] :
unique β
If the domain of a surjective function is a singleton, then the codomain is a singleton as well.
theorem
function.injective.comap_subsingleton
{α : Sort u}
{β : Sort v}
{f : α → β}
(hf : function.injective f)
[subsingleton β] :
If the codomain of an injective function is a subsingleton, then the domain is a subsingleton as well.