mathlib documentation

data.nat.multiplicity

Natural number multiplicity

This file contains lemmas about the multiplicity function (the maximum prime power divding a number).

Main results

There are natural number versions of some basic lemmas about multiplicity.

There are also lemmas about the multiplicity of primes in factorials and in binomial coefficients.

theorem nat.multiplicity_eq_card_pow_dvd {m n b : } (hm1 : m 1) (hn0 : 0 < n) (hb : n b) :
multiplicity m n = ((finset.filter (λ (i : ), m ^ i n) (finset.Ico 1 b)).card)

The multiplicity of a divisor m of n, is the cardinality of the set of positive natural numbers i such that p ^ i divides n. The set is expressed by filtering Ico 1 b where b is any bound at least n

theorem nat.prime.multiplicity_one {p : } (hp : nat.prime p) :

theorem nat.prime.multiplicity_mul {p m n : } (hp : nat.prime p) :

theorem nat.prime.multiplicity_pow {p m n : } (hp : nat.prime p) :

theorem nat.prime.multiplicity_self {p : } (hp : nat.prime p) :

theorem nat.prime.multiplicity_pow_self {p n : } (hp : nat.prime p) :
multiplicity p (p ^ n) = n

theorem nat.prime.multiplicity_fact {p : } (hp : nat.prime p) {n b : } (a : n b) :
multiplicity p n.fact = ∑ (i : ) in finset.Ico 1 b, n / p ^ i

The multiplicity of a prime in fact n is the sum of the quotients n / p ^ i. This sum is expressed over the set Ico 1 b where b is any bound at least n

theorem nat.prime.pow_dvd_fact_iff {p n r b : } (hp : nat.prime p) (hbn : n b) :
p ^ r n.fact r ∑ (i : ) in finset.Ico 1 b, n / p ^ i

A prime power divides fact n iff it is at most the sum of the quotients n / p ^ i. This sum is expressed over the set Ico 1 b where b is any bound at least n

theorem nat.prime.multiplicity_choose_aux {p n b k : } (hp : nat.prime p) (hkn : k n) :
∑ (i : ) in finset.Ico 1 b, n / p ^ i = ∑ (i : ) in finset.Ico 1 b, k / p ^ i + ∑ (i : ) in finset.Ico 1 b, (n - k) / p ^ i + (finset.filter (λ (i : ), p ^ i k % p ^ i + (n - k) % p ^ i) (finset.Ico 1 b)).card

theorem nat.prime.multiplicity_choose {p n k b : } (hp : nat.prime p) (hkn : k n) (hnb : n b) :
multiplicity p (n.choose k) = ((finset.filter (λ (i : ), p ^ i k % p ^ i + (n - k) % p ^ i) (finset.Ico 1 b)).card)

The multiplity of p in choose n k is the number of carries when k and n - k are added in base p. The set is expressed by filtering Ico 1 b where b is any bound at least n.

A lower bound on the multiplicity of p in choose n k.

theorem nat.prime.multiplicity_choose_prime_pow {p n k : } (hp : nat.prime p) (hkn : k p ^ n) (hk0 : 0 < k) :