mathlib documentation

order.filter.cofinite

The cofinite filter

In this file we define

cofinite: the filter of sets with finite complement

and prove its basic properties. In particular, we prove that for it is equal to at_top.

TODO

Define filters for other cardinalities of the complement.

def filter.cofinite {α : Type u_1} :

The cofinite filter is the filter of subsets whose complements are finite.

Equations
@[simp]
theorem filter.mem_cofinite {α : Type u_1} {s : set α} :

@[instance]

theorem filter.frequently_cofinite_iff_infinite {α : Type u_1} {p : α → Prop} :
(∃ᶠ (x : α) in filter.cofinite, p x) {x : α | p x}.infinite

theorem set.infinite_iff_frequently_cofinite {α : Type u_1} {s : set α} :
s.infinite ∃ᶠ (x : α) in filter.cofinite, x s

For natural numbers the filters cofinite and at_top coincide.